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Introduction

This Report has not been conceived for specialist readers but for those who are interested in the
techniques and the calculation methods involved in the project of interferometric antennas for
gravitational wave (GW) detection. I think that my contribution to this didactical approach is more
useful than to make a repetition of the already excellent review articles on the field of GW generation
and detection [Braginskii and Rudenko 1978, Douglass and Braginskii 1979, Weiss 1979, Thorne 1980,
1987, Hough et al. 1987]. On the other hand, daily contact with the problems arising from the technical
solutions necessary to plan the very large interferometer VIRGO gave me the push to write this
Report; I realize that regretfully many authors will not be quoted in the text, as will be some
experimental results. I apologize for such omissions.

The generation of laboratory GWs with the purpose of detecting them in a “Hertz experiment”
[Misner, Thorne and Wheeler 1973 (MTW), Braginskii and Manoukine 1974, Douglass and Braginskii
1979] is unfortunately an almost hopeless enterprise. Extremely high-energy particles accelerated in the
next generation accelerators have been considered as potential candidates for the “laboratory”
generation of GWs [Braginskii et al. 1977, Vinet 1981, Diambrini, Palazzi and Fargion 1987], but even
in this case many more years will be needed to succeed. Astrophysical sources seem to be nowadays the
only possible emitters of detectable gravitational radiation; in the following I will mention briefly the
best candidate sources likely to be detected in the coming years.

The amplitude of the GWs emitted will be denoted by means of the dimensionless quantity (see
section 1)

2
o= ZG d f p(3xx? = 8,,x") dv, (L1)

where G is the Newton constant, ¢ the light speed, R, the distance from the source, p the source mass
distribution and the integral is calculated over the source volume. The effect it produces on the
separation L of two freely falling masses (see sectlon 2) is a variation AL~ ZLBhTT, which is a
measurable quantity. Hence I will denote by 4 = haB the strength of the sources.

Historically the most discussed and most likely producer of detectable GWs has been the collapse of
a star. In this process the matter explosion, due to eq. (I.1), must not be of spherical shape for the
emission of GW; an approximate formula is

)“2< 15Mpc\(1kHz\/ 107 s)”z

h=5x 10‘“( U 1.2
m (1.2)

where 7 =AE/M,’ is the fraction of energy emitted in GWs, R, the distance, » the observation
frequency and 7= d/c the time it takes the collapse shock to traverse the source dimension d_. The
quantity 7 is the fraction of total energy converted in GW, supposed to be <0.2. The explosion rate is
expected to be 1 in 40 years in the galaxy and a few per year in the Virgo cluster. The pulse duration 7
is usually considered to be =1 ms, hence detectors are tuned accordingly.

Other classes of events, of far less certain predictability, are those involving black holes. The infall of
a particle strongly produces GWs; moreover, if the particle spirals into the black hole, the radiation is
100 times more intense than for radial infall [Kojima and Nakamusa 1984].

A mechanism surely emitting high-intensity GWs is the rotation of compact binary objects such as
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neutron stars; since the star diameter can be =10 km, the mutual distance can be so small that before
coalescence very intense radiation is produced. The signal amplitude is

102 M)(ﬂ)m(ﬁ_>(_i_>2/3
h=10 ( R, \m,) \M,/\10Hz/ ° (L3)

where M and u are the total and reduced mass, respectively, and M, the solar mass. The time elapsed
around the frequency » is

7o 1) (M) (B "

Since the detector S/N ratio is proportional to ¢''? it follows from (1.4) and (I.3) that the S/N ratio
increases as » >, i.e., detectors having an extended bandwidth at low frequency are more likely to
detect these sources. An estimate of Clark et al. [1979] gives =3 events per year in a sphere of 100 Mpc
radius.

Pulsars have been interpreted as rotating neutron stars having an off-axis magnetic dipole field
[Pacini 1968, Gold 1968], and are considered to be the best candidates as continuous GW emitters. A
surface protuberance or aspherical shape with an ellipticity € could give an amplitude [Zimmermann

and Szedenits 1979, Zimmermann 1980]

2
1023 14 10kpC)
h=10 e(lOHz)( R, /’ (L.5)

where v is the GW frequency, twice the rotation frequency because of eq. (1.1). Upper limits to the
GW emission from the Vela and Crab pulsars have been estimated by Zimmermann [1978] to be
h=3%x10"%* and 2Xx107*® (standard Crab model), respectively, but according to the model of
Pandharipande et al. [1976], the Crab pulsar may have an amplitude upper limit of s =107,

Since the total number of pulsars in the Galaxy has been estimated to be ~10° [Taylor and
Manchester 1977, Lyne et al. 1985] and the fraction of pulsars with GW frequency >10 Hz is about 5%
[Manchester and Taylor 1981, Rawley et al. 1986, Barone et al. 1988] we can expect several thousand
pulsars having GW frequency » > 10 Hz and in the frequency range of the kilometric interferometric
detectors.

The Heisenberg uncertainty principle sets a fundamental limit to the strain sensitivity measured by
means of two freely falling masses M separated by a distance L, in a time T,

1 [ _25(103m)(1Hz)(1075)”2(102kg i
h=gr Va7 = 152107 = N\ =) (16)

where 2 = 27rv and # is the reduced Planck constant. With M =300kg, T=3x10"s, L =3 x 10’ m, at
the Crab frequency (v = 60 Hz) eq. (1.6) gives h>1.5x 107,

If a pulsar and a star form a binary system there may be a drainage of star matter from the pulsar’s
surface due to the high gravitational field. This matter is accreting around the neutron star, which is
then spun up; the accretion may then reach the Chandrasekhar [1970]-Friedman-Schutz [1978]
instability point and strongly emit GWs with an expected amplitude [Wagoner 1984|
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300Hz)< F, )”2

h=2x 10‘28( -
1077 J/em® s

(1.7)

where F_ is the flux of the emitted X-rays.
The stochastic background of GWs produced by all sources has an expected amplitude (for a review
see Hough et al. [1986], Thorne [1987])

0, )“2<100Hz)

h=6x10" 2"(10_10

(1.8)

14

where (2, is the ratlo of the source energy density in a bandwidth v to that necessary to close the
universe (107" J/cm?).

The basic and, to my opinion, the first idea of the interferometric detection of GWs is, clearly stated,
contained in a paper of Gertsenshtein and Pustovoit [1963]; their idea is that “. . . . it should be possible
to detect gravitational waves by the shift of the bands in an optical interferometer”. The first complete
work on the noise competing with the GW signal in an interferometric antenna is due to Weiss [1972]; it
is also his merit to have advanced the idea of using a “stable” cavity such as the Herriot [1964] delay
line, and fast light phase modulation to get rid of the laser’s amplitude fluctuations. But the very first
experimental attempt, giving high sensitivity in the measurement of the test mass displacement is due to
Forward [1978]. Forward used retroflectors to reflect the beam back to a beam splitter and used active
controls to lock the interferometer to a fringe; he obtained a spectral strain sensitivity of h >
2x107'°Hz™"? for »>2 kHz. The Max Planck at Munich group [Billing et al. 1979], following Weiss’
delay lines idea, carried out the construction of a 30m 1nterferometer having a sensitivity h=
8 X 10 20 H -1/ 2

The alternatlve to using delay lines is using Fabry—Pérot cavities; this scheme, which was pursued by
Drever [Drever et al. 1980, 1981], is very elegant even though it requires more sophisticated optical and
feed back design than in the delay line case. Two Fabry-Pérot interferometers are now working in
Glasgow and Caltech with a sensitivity h=12x10""Hz " [Ward et al. 1987] and h=5Xx
107" Hz™"'* [Spero 1986], respectively.

Several optical schemes have been invented for increasing the interferometer’s sensitivity: light
power recycling [Drever 1982] allows the reuse of the unused light from the interferometer; the
synchronous recycling scheme [Ruggiero 1979, Drever 1981] allows an increase in the interferometer’s
sensitivity to periodic signals as do the methods of detuned recycling [Vinet et al. 1988] and dual
recycling [Meers 1988]. Of all these schemes only that of power recycling has been tested experimental-
ly [Ridiger et al. 1987, Man et al. 1987] with success. All the signal recycling schemes will be tested,
perhaps painfully, in the future kilometric interferometers.

Another approach to increasing the sensitivity has been given by Caves [1980], who was the first to
realize that photon number fluctuations in the interferometer’s arms could be produced by vacuum
fluctuations of the light field at the unused port of the beam splitter; the idea was to inject into this port
a squeezed photon state, i.e. a state having phase fluctuations smaller than Poissonian but with larger
amplitude fluctuations. The existence of these states has been demonstrated experimentally and this has
led the Munich group [Gea-Banacloche and Leuchs 1987] to experimentally explore the sqeezing route.

At this very moment (February 1989) it seems that there is a likely chance that the construction of
four large interferometers will be approved: the German—Scottish one, the French—Italian one and the
two American ones. Japan and Australia are likely to join this group. The need of several large
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interferometers is also dictated by the necessity of making coincidence detection of GW signals.

There is also a finite chance that GWs will be discovered meanwhile by the bar detectors and this will
finally convince physicists from other fields to join what I consider the most exciting and, at the same
time, frustrating experience a physicist can have.

This Report has been subdivided into 14 sections: in section 1 the generation mechanism of GWs and
in section 2 the interaction of GWs with matter are described. Delay lines and Fabry—Pérot optical
interferometers are described in sections 3 and 4, respectively. The recycling schemes are described in
section 5, the laser intensity noise in section 6 and the noise due to the laser linewidth in section 7. The
laser lateral beam jitter noise is described in section 8 and the noise due to gas pressure fluctuations in
section 9. The thermal noise is described in section 10, the seismic noise in section 11, the radiation
pressure effects in section 12, the cosmic ray background in section 13 and finally, a pictorial description
of source intensities and relevant noises is presented in section 14.

1. The generation of gravitational waves and the transverse traceless gauge

In Einstein’s Theory of General Relativity (TGR) [Einstein 1916] Gravitational Waves (GWs) are
shown to be ripples in the space—time curvature propagating with the speed of light. Under the
hypothesis of weak fields a perturbation k,, to the flat metric tensor

1 0 0 0
o -1 0 o

Tw=lo 0 -1 0 (1.1)
0 0 0 -1

is created by the energy-momentum tensor 7,, according to the equation (see MTW)
Ov, = (87G/cYr, , (1.2)

where ¥, = h, — 18, h%, G is the Newton constant and c the speed of light. From momentum-energy
conservation,

9.1, =0, (1.3)

wlpy

and considering that 7,, = pc’, where p is the matter density, it follows that [Landau and Lifshitz 1951]

-2 (& a)
Yoo =~ g \a2 | ¥ 9Y) e (1.4)

where R, is the distance from the source; eq. (1.4) is valid when the matter speed is far less than ¢ and
when the GW wavelength is much larger than the source dimensions. From eq. (1.4) it follows that the
GW field is produced by the second moment of the mass distribution.

Since ¥, is a symmetric tensor it has 10 independent elements, which are reduced to 6 since eq. (1.3)
gives

9.V =0, (1.5)
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The number of independent elements of ¥,, can be further reduced by applying the coordinate
transformation

x,=x,te,, (1.6)
where ¢, are infinitesimal functions which must leave unchanged the line element

ds*=g,, dx* dx”. (1.7)
Equation (1.7) imposes

Oe, =0, (1.8)

h,,=h,, — de, ldx, — de,ldx, . » (1.9)
Hence writing ¥, as a plane wave propagating in the k direction at speed c,

v, =A,¢", Kk =0, (1.10)
and putting [see eq. (1.9)]

g, =C, e, (1.11)
we can define a four-velocity V* and choose C, such as to give

A,VE=0. (1.12)

But these four equations are not independent since k'A, V¥ =0 for any given k; hence a further
condition can be applied and we impose

A* =0, (1.13)
This condition gives k!, =0 and
v,=h,,. (1.14)

Equations (1.5), (1.12) and (1.13) define the Transverse Traceless (TT) gauge (see MTW); by choosing
v®=1, V=0 we obtain

h.y=0, i.e. only spatial components#0,
hy,; =0, ie. divergence-free spatial components, (1.15)

hrx=0, traceless.

Let us assume the wave propagates along the x; axis; then
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k=(k,0,0,k), (1.16)
and from eq. (1.15) it follows that
hie =0,  hy=—hy =0, hy=hy . (1.17)

In matrix form

00 0 0 00 00 0000

TT 0 hll h12 O TT O 1 0 0 TT 0 0 1 0 + x

h; 0 thZT —thlT 0 =h,; 00 -1 0 t+h, 0100 =A,e,+Ae,. (118)
0 0 0 0 00 00O 0 000

The two polarizations e;, and ¢}, are exchanged by a rotation R of /4 around the x, axis, i.e.,

0 000
_1(0 110
RrH=710 -1 1 of
0 000
(1.19)
R(wi4)e R N(w/d)=—¢", R(w/4)e'R (mid)=e".
This behaviour under rotation is proper to a spin-2 field.
The Riemann tensor
= 1( azhim ‘92th _ ‘72hkm _ ah?] ) (1.20)
Hm =2 \ogx* ax'  ox'ox™  ox'ox' ax*ox” '
with the conditions of eq. (1.11) becomes simply
Ry = Ran;; = _%hg (1.21)

The TT part of eq. (1.4) can be evaluated by applying to ¥, the TT projection operator (see MTW)
Py =8, —nn, (1.22)

where n is the unit vector in the direction in which we want to evaluate the TT part of the GW
amplitude; herice

V=P, VY,Py— 3P, ¥, P, (1.23)

af Tjl
It is easy to verify that from eqs. (1.23), (1.4) and (1.15) it follows that W:'ﬁrnp =0, ¥.1 =0, and

2G (9’ : m 2G &
o= A <_ f p(Pn]'x]lelB - %Paﬁxlx le) dv) == C4R DI; ’ (124)
0

of c'R,

ar*

where D, is the reduced quadrupole momentum of the GW emitting mass system.
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2. The detection of gravitational waves

A particle moving freely under the action of a gravitational force has its coordinates x* satisfying the
geodesic equation

x|, dk dx?
dr? + 1 A dr dr (2.1)

where 7 is proportional to the particle’s proper time and

m( 98mv , 98mr _ 98 A)

[ w v + mA v )

r,=:g ( T (2.2)

are the Christoffel symbols. It is always possible to find a space-time trajectory in which I"%, =0 at any

time; along this trajectory the particle is freely falling. It is easy to show that the separation £ between
two particles A and B satisfies the geodesic deviation equation

D¢ dxf dx® _

a y Rt
a2 TRewt g =0 (2.3)

where D? is the second covariant derivative,

D’ %" dF" de o ( g d ) . (dfﬁ s d )dx
dr’  dr? v € L. dr ¢ 1y dr T8 dr / dr ° (2:4)

With the purpose of evaluating ¢* let us put x = 0 in the center of mass system (CMS) of particle A (see
MTW), the time x, equal to the proper time 7 and the coordinate axis connected to gyroscopes carried
by A. At x =0, since A is freely falling along the geodesic line, we obtain

(I“;-y)x=0 = (dr‘;'y/d'r)x=0 = O ’ (2.5)
and eq. (2.2) becomes
D%dr? = d%¢%dr’. (2.6)

Introducing egs. (1.21) and (2.6) into eq. (2.3) and considering that, to first order in h:f, t= 7, where ¢
is the observation time, we obtain

d’€/de® = =R, 50 £° = $(d*1dP)R £° (2.7

From eq. (2.7) we can see the effects of GW polarization on the detector; if the GW is propagating
along the z axis and the masses A and B are located as in fig. 2.1, then

£ =(x—xp)". (2.8)
Putting

F, =M d¢%de = iM (d*/de*Yh 5 £° (2.9)
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X

Fig. 2.1. In an inertial system having the origin in the center of mass of mass A the effect of a GW traveling along the z axis is to displace the mass B
from the equilibrium position by an amount A£* = 3hT; £° [see eq. (2.7)].

and considering that the only independent components of 4 are h;; and h;,, we can write the
projection F of F, along the line connecting A to B,

F(6, o) = F, £\ &| = 3| €|M(h]] sin’0 cos2¢ + A}, sin’f sin 2¢) . (2.10)

In eq. (2.10) the tidal character of the force produced by a GW is clearly shown by the term | £|. It is
also evident from eq. (2.10) that F =0 if the mass separation £ is in the GW propagation direction.

In the interferometric antenna the mirrors are attached to masses suspended with wires like pendula.
With reference to fig. 2.2, the beam splitter in the origin has mass m, and the other two mirrors have
mass m, and m,, respectively, and are placed at a distance L from the origin; £ are the coordinates of
the masses m; in the CMS. The CMS coordinates are

Xems = Lmy/(m, + m, + my), Vems = Lmy/(m; + m, + m,) . (2.11)

For the sake of simplicity we assume that the GW is propagating along the z axis; under this condition,
using eq. (2.7), the acceleration of the mirrors produced by the GW interaction becomes

('fl)GW 2(h11 cms + i{lr;rycms) > (x.3)GW Z[h (L xcms) h12 ycms] ’ (212)
(yl)GW 2(h21 cms + h;r;ycms) 4 (yZ)GW = %[_h21xcms + hTT(L ycms)]

The equations of motion of the mirrors read

X+ "'1—1(’51 - fl) +(g/)xy — x,) = (X)) gw > Xyt 73—1(x'3 - fs) +(g/l) (x5 — x3) = (¥3)gw »

it 71—1(};1 - )71) + (/) (¥ = ¥1) = (Fs)ow > Yo t 7'2_1()}2 - )72) +(&/L)(y2 = y2) = (Fa)ow
(2.13)
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y
m, (Xz=0,Y=1L)
A
—
§2
L
W (xcm'ch)
§3
—’
g ms
LASER > < \/ -] —
y X
m = - - -
1 (X1— O.Y‘—O) ( Xa— L,Ya— 0)
Y

Fig. 2.2. The interferometer’s mirrors, having mass m,, m, and m,, are located at (x, y) positions (0,0), (0, L) and (L, 0), respectively. The
acceleration of the mirrors produced by a GW traveling along the z axis is calculated introducing their coordinates in the CMS, £, into eq. (2.9).
The inertial reference system has the origin in the center of mass of the mirror system.

where 7, and /; are, respectively, the relaxation time and the length of the ith pendulum and x,, y, are
the pendulum suspension point displacements due to seismic noise. Equations (2.13) can be solved
exactly, but for the sake of simplicity we assume 7,=7 and /;=1; then we can subtract the first
equation from the second and the third from the fourth, obtaining

Af+ 17 (A% - AX) + (Ax — AX)wl=—3A1[L, Aj+77'(Ay—Ay)+ Ay —AY)ei=~LALTL,

(2.14)
where Ax=x, ~ x,, Ay=y, —y,, Ak=x, — %, and Ay =y, — y,, wo =g/l and 7=1..
In a single-pass interferometer the phase change is
Ap =4m(Ax — Ay)/A, (2.15)

where A is the light wave length; hence, considering that, when the GW is propagating along the z axis,
k1 =~h,, and putting Ag = 47(A% — Ay)/A, we obtain

Ag+7 (A —AQ) + wi(Ap —Ap) = 4{ hyL . (2.16)

This equation can be easily integrated giving [Pizzella 1975]
t

Adml [ . . —=m)/ 2y i 1 s -
8o(0)= 3L [ sin diy(c = m) e T (n) + 7 Bn) + 03 8@ d,
0
0

@y =Vwi—1/(41%).

(2.17)
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To understand the effect of the GW on A¢ we can neglect the seismic noise contribution and study the
behaviour of eq. (2.17) assuming two simple functional forms for h(t) = h1(f). In the first case we
assume h(¢) to be a pulse of duration At <1/w, and amplitude A,

h(n) = hol8(n) — 6(n — A7) . (2.18)

Inserting eq. (2.18) in eq. (2.17) and assuming the mechanical quality factor of the pendula
0 = w,7>1 we obtain

Ap() = 75 h(e y+ 3L L, Atsin(yf) e~ + O((a, AfY) + O(1/Q)]. (2.19)

Equation (2.19) shows that in the interferometric detector the measurement of Ag gives a precise
measure of A(t); the term in h,, which represents the “memory” that the pendula have of the GW for
t> At, can be neglected since it is multiplied by o, At<1.

In the second case we consider a periodic GW with amplitude

h(t)=hye % (2.20)
Inserting A(t) in eq. (2.17) we obtain for t> 7

47;-L 02 eiﬂgtho

Ap=— , . (2.21)
A wy— QL +iQ)r
For (. > w; and 0 > 1, eq. (2.20) becomes
Ap =(4mL/N)/h, e . (2.22)

Equation (2.22) shows that with an interferometric detector it is possible to measure distortionless h(r)
even for a periodic GW; hence the very peculiarity of this detector is due to the low value of the
pendulum resonance frequency y,, which can be made as low as a few Hz, giving the possibility, in
principle, to detect low-frequency GWs. Furthermore the possibility of making L very large (some km),
in virtue of eq. (2.9), would allow the operation of the antenna at room temperature while maintaining
high sensitivity even in the presence of noise, such as thermal noise, which is dominant at low
frequency.

For the evaluation of the phase shift due to the GW interaction of a photon beam bouncing between
two mirrors, it is opportune to choose a coordinate system in which the mirrors are at rest; in this
system the only GW interaction with the photon beam is due to the change of the metric coefficients. In
fact if the mirrors are freely falling (i.e. with suspensions having no rigidity), then in the TT system they
are at rest; this is easily shown considering that to first order in haTg from egs. (2.2) and (2.4) it follows
that

FZM - Fgo = ZhaB ) = - %hgfﬂ = _ngfy: - lhTTfe (2.23)

and hence (£%)yr =
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A matrix approach, used extensively for the evaluation of the phase shift due to the GW interaction
with a photon bouncing between freely falling mirrors, is due to Vinet [1986]. The method is based on
the consideration that due to eq. (2.23) the only effect of the GW on a photon is contained in the
perturbed ds’,

ds® = c*de* = [1+ h(t)] dx* — [1 — h(1)] dy*, (2.24)
where h(t) = h cos ¢, with ¢ = {2t + ¢ and the photon is supposed to travel along the x or y axis.

If the photon is scattered back by a mirror at distance x = L, then from eq. (2.24) it follows that the
round trip retarded time is

tr=t—7—8h— TCOS(¢‘T]), (225)

where n=(2,L/c and ¢ = *1 if the photon is traveling along x or y, respectively.
If the time dependent part of the EM fields along the trajectory is taken to be

A(t)=(A,+ 3heA, +ihe @A) e, (2.26)

where w =2y, (y, is the laser frequency) then substitution of eq. (2.25) in eq. (2.26) gives (to first
order in k)

A(t)zeiw(lec—t)I:AO + %h eld’({41 e—ziﬂgL/L‘ +iwg £ Slnn e—iT)AO)
11 . —id sinLe , . L sing in
+she A2 et tiwe z T e AO . (2.27)
This can be put in matrix form,
A\’ Ay
Al =DlA,], (2.28)
A, A,
1 00
. Sin'f’ —-ip =
D=yief = e ¥ 0| (2.29)
i MO en o y

£=wllc, x=e", y=¢e™.

This approach can be applied to interferometric GW detectors because in this kind of antenna the
observation frequency is always above the mirror suspension mode frequencies, hence the mirrors can
be considered as being freely falling.

The case of mirrors elastically bound with self-frequency », = 2 /27 has been treated by Pegoraro
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et al. [1978]; they found a gauge transformation

1

1 . .
= P AR xxP &= 5 Ao x°x®
(2.30)
g% = —Ah:;xﬁ , Ba=1,2,
A=102/(02-0%, 0+, (2.31)
giving a h,,,, evaluated by means of eq. (1.9), which leaves at rest a mirror initially at rest.

An eikonal equation expansion to first order in &, has been studied by Linet and Tourrenc [1976];
they found that the photon phase shift can be put in the form

i

f h,p'p"dt, (2.32)

fo

2

_°
$TLE

where p* is the photon four-momentum, and showed that in the resonance arising from the GW and
photon interaction [Braginskii and Menskii 1971, Braginskii et al. 1974] the photon phase shift increases
linearly with time and is proportional to the ratio w/{2,.

3. Delay line interferometers

The need to increase the interferometer phase shift due to a GW signal is dictated by the existence of
noise which affects only the phase of the optical rays without creating real displacements of the mirrors.
To overcome the effects due to this noise, which will be called “phase noise” in contrast to
“displacement noise”, it is very important to find an optical scheme allowing the beams to bounce back
and forth in the optical cavities.

Actually the ultimate phase noise is the photon counting noise A¢,-(t) due to the anticorrelated
fluctuations An of the photon number # in the interferometer arms according to the uncertainty relation

(Apc(t)’)'? = Adppc = 1/An . (3.1)
For a photon coherent state An =7, hence
Appc =1 VT =V hy /Wt , (3.2)

where h is Planck’s constant, y, the laser frequency, W, the light power in the interferometer arms and
t the measurement time. If the light makes 2N reflections (see fig. 3.1), the phase shift due to a mirror
displacement Ax, , =+ 3h(f)L is

4N - _
P12= A Ax + 127 @/2+ ®125 (3.3)

where ¢, , are given fixed phase shifts in the two arms and Ax has been evaluated in the limit
. L/c<].
g
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Fig. 3.1. In the delay line scheme, the laser beam enters the two optical cavities and bounces 2N times between the mirrors with the purpose to
increase the S/N ratio of the GW signal to the photon counting noise.

With reference to fig. 3.1 the power of the recombined beams is
W, = R*™(WI2)[1 % cos(¢, + ¢ + Adpc)] (3.4)
where R’ is the intensity reflectivity of the mirrors, ¢, = ¢, — ¢, and Adp has been evaluated for

W, = WR*". Putting ¢, = #/2, measuring W, with photodiodes PD having efficiency » and forming the
current difference, we obtain

AP = L{[(4Nm/NR(E) L) + Ad.) + ALy, (3.5)

where

I, = (We/hy)nR*™ and Al = &\/(WR*™/thy,)n(1 - n)

are the photodiode mean current and current fluctuation, respectively; e is the electric charge. The GW
detection condition, introducing eq. (3.2) in eq. (3.5) and using eq. (3.3), reads

A hy,

h()> 4N7L Y WegR*™”’

(3.6)

where the assumption 242, NL/c <1 has been made. Equation (3.6) shows that 2N reflections increase
accordingly the S/N ratio for the photon counting noise.



380 A. Giazotto, Interferometric detection of gravitational waves

The delay line (DL) scheme was first studied by Herriot et al. [1964]; the laser beam enters the cavity
through a hole in the near mirror with coordinate (x,, y,) and slope (x;, y,) (see fig. 3.2) and is
reflected back and forth between the mirrors having distance L and focal length f, respectively. Defining

cos§=1-L/2f, (3.7

where 8 is the rotation angle of the beam spot on the mirrors (see fig. 3.3), the coordinates of the nth
spot are

X, = X, cos né + V4f (xo +2fx;) sin né ,

(y0+2fy0)smn0 4f-L>0,

(3.8)
Y, = Yo C0s né +

f

Fig. 3.2. The laser beam enters the DL at position (x,, y,) and angle (x,, y;), then bounces 2N times and leaves the cavity through the entrance
hole.
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® Spot on the close mirror

O spot on the far mirror

Fig. 3.3. The beam enters the DL at position n =0, is reflected from the far mirror at positions n=1,3,5 and from the close one at positions
n=2,4. 2N8 can be larger than 2.

which can be put in the form

x,= Asin(nf + ), y,= Bsin(nd + B), (3.9)
where
_ 4 2 , 12 _ A 1
A - 4f__ L [xO + LxO(xO) + Lf(xO)] ’ tg a= L 1 1 +2fx(,]/x0 ) (310)

and similarly for B and B. If A = B the spots lie on a circle; the beam reentrance condition is fulfilled
when

2k0=2Jm, J, kintegers, J#k, (3.11)

k being the number of spots on a single mirror.

The DL is a very flexible method to cope with misalignments due to mirror movements [Goorvitch
1975, Billing et al. 1979]. Fattaccioli et al. [1986] have shown that the total optical phase shift is
independent of tilting (A+}) and transverse mutual mirror translations (Ax) up to second order in Ax/R
and A4, respectively, R being the radius of the spot circle on the mirrors, if the DL is perfectly
reentrant and aligned.

With the purpose of reducing the light scattering from the entrance hole in the mirrors close to the
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beam splitter [Schilling et al. 1981}, the size of the input beam should be sufficiently reduced increasing
the beam angular spread Ax. and Ay.. The spot diameters due to this spread,

Ax, = L f n 3 f
do not increase indefinitely with N but vary cyclically with n; this focusing characteristic is very relevant
for avoiding beam size divergence when N is large, and a careful evaluation of the beam entrance
parameters is needed to avoid geometrical overlapping of the spots. Actually two contiguous spots on a
mirror are associated with different delays; if they do overlap the light diffused by the mirror coatings is
sent in the wrong beam, causing noise due to the finite size of the laser line width.

The light phase shift due to GW interaction in a DL without the constraint 242, NL/c <1 has been
calculated by Vinet [1986] and Vinet et al. [1988].

Let us consider a DL of length L in which the beam is reflected 2N times and which has mirrors with
amplitude reflectivity iR, and iR,. By repeated application of the operator D [see eq. (2.29)] we obtain
the 2N reflection operator,

2f sin n@ Ax, , Ay, = 2f sin nf Ay, , (3.12)

1 0 0
.. simmN _, _n

iM=(iR,)"(R,)'D" = ()" RI RN 1€ — e vy O (3.13)
isgs‘—nr;"ﬁe‘" 0y

where the signal is contained in the two matrix elements M,, and M,;; putting
7.,=2NL/c, (3.14)
we see that M,, and M, are maximum when
N=30Qr1=ml2, (3.15a)
while the signal is zero when
i, =nm (n=12,...). (3.15b)

From egs. (2.27) and (3.7) it follows that the maximum phase shift A¢,; of the light wave due to GW
interaction in two DLs (see fig. 3.1) is

sin 2 (L/c)N
A¢p, =2hw £ ———(";—)— . (3.16)

Typical DL schemes are those adopted by Forward [1978] at Malibu with 2N = 4, MIT with 2N = 56
and Max-Planck-Institut in Munich with 2N =90.
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Fig. 3.4. The optical layout of the Malibu interferometer. The beam splitter BS is mounted on the central mass where the piezoelectric transducers
PZT, driven by the filtered difference signal of the photodetectors PD1 and PD2, keep the interferometer output locked to null. The retroreflectors
C1 and C2 are mounted on the far masses, which are ~2 m away from BS. The detector is lit by a 30-50 mW HeNe laser.

In the Malibu interferometer, the world’s first working prototype, the optical system (see fig. 3.4) is
composed of a beam splitter and two retroreflectors mounted on the far masses. The optical path is
~8m and the strain sensitivity is # =107'* Hz™''? for » =2 kHz.

The MIT interferometer, shown in fig. 3.5, is a system with 2N =56 and a mirror separation of
1.46 m. The mass supporting the beam splitter also supports two Pockels cells used both for keeping the
interferometer locked to a fringe and for giving phase modulation with the purpose of reducing the laser
amplitude noise. The noise due to the laser lateral beam jitter is reduced by transporting the laser light
through an optical fiber. The mirror’s pendulum oscillations are damped by means of electrostatic
dampers [Linsay and Shoemaker 1982]. The strain sensitivity obtained [Livas et al. 1986] is h =
3x 1077 Hz ™"

In the Munich interferometer (see fig. 3.6) the mirror distance can be adjusted between 29 m and
32 m with the purpose of obtaining different numbers of beams. Locking to a fringe is obtained both by
using Pockels cells inserted in the DL and a magnet and coil [Billing et al. 1979] damping system on the
mirrors; more details about the use of these systems will be given in subsequent sections. The laser is a
5 W argon ion laser stabilized by means of an external reference cavity and by the interferometer itself
used as a reference cavity. The laser light is fed to the interferometer by means of an optical fiber. The
maximum sensitivity achieved [Shoemaker et al. 1987a] with 2N =90 is A=8x 107* Hz ™',
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Fig. 3.5. The MIT interferometer: a DL system with 2N =56 and 1.46m long arms. The optical phase is locked by means of Pockels cells PC
mounted on the beam splitter. An optical fiber is used to feed the laser light and to reduce the laser lateral beam jitter. The pendulum motions of
the masses are damped by means of the electrostatic dampers ED.

delay lines
{N=4 shown)
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Fig. 3.6. Layout of the Munich interferometer (from Shoemaker et al. [1987a]) showing the laser stabilization scheme. The laser is locked both to
the reference cavity and the interferometer itself used as a frequency reference. Locking of the interferometer to a fringe and phase modulation are
performed by the Pockels cells P1 and P2. Magnets and coils are used to damp the pendulum oscillations of the mirrors.
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4. Fabry-Pérot interferometers

Fabry-Pérot (FP) theory is largely described in many books (see, for example, Born and Wolf
[1964], Hernandez [1986]); with reference to fig. 4.1, M, and M, are two mirrors located at positions x,
and x,, respectively (x, — x, = L); the amplitude reflectance iR,, the transmittance T, and the loss B, of
the mirrors satisfy the relation

T?+R!+B’=1, i=1,2. (4.1)

A light beam of frequency », = w,/2 entering the cavity with amplitude A , is partially transmitted with
amplitude A, and partially reflected with amplitude A,.
If A, and A, are the transmitted and reflected amplitudes inside the cavity, then

A =iRA+TA,, A,=TA,+iRA,, A,;=iR,DA,, (4.2)
where D is defined in eq. (2.29). The solution is

A =i[R,+ (R} + T*)R,D](1+ R,R,D)'A,=iFA, . (4.3)
An evaluation of F gives the relevant matrix elements [Vinet 1986],

P R, +(R:+ T?)R,x
nTUTTT TR Ry
Fo= eTiR,Esin(n)/m e ™
27— =RRx—1 —RRxy
_ eT?R, & sin(n)/n e
3 =RR= t-RRxy’

(4.4)

where x and y have been defined in eq. (2.29).

From eqs. (2.27) and (4.4) it is possible to evaluate the maximum phase shift A¢p, for a cavity
configuration similar to the one shown in fig. 3.1 under the condition x = +1 (optical resonance
condition),

T2RhwL/c 1

(1-RR,)’ V1+F sin’Q,Lic’

A =2 (4.5)

Ao R.Ty RT

1
S ! ~ A2 272
A e
Ar A3
LK) M2

Fig. 4.1. Schematic diagram of the light field amplitudes inside a cavity, composed of the mirrors M, and M, having reflectivity iR, and iR, and
transmittance T, and 7,, respectively. The amplitude A, is connected to A, through the operator defined in eq. (2.29) containing the effect due to
the GW interaction.
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where F’ =4R,R,/(1- R,R,)’, T,<T, and the realistic condition Q,L/c<1 has been assumed. In
analogy to eq. (3.8), defining the cavity storage time

2£ VR,R,

c 1—- RR ’ (4.6)

making the approximation R, =1- 3(T7 + B?) and putting B, < T, we finally obtain

|Adep| = 0T, ——= \F 4.7)
P \/1_+ng_§

The comparison between |Ady, | and |Adg,| is shown in fig. 4.2; |Adg,| is plotted for T, < T,; this
experimental condition is particularly useful in interferometers using light recycling because very little
power flows out of the far mirror.

Effects due to misalignment of the FP cavity have been evaluated by Fattaccioli et al. [1986].

Typical FP prototype interferometers are in Glasgow and at CALTECH. The Glasgow interferome-
ter [Ward et al. 1987] (see fig. 4.3) is composed of two 10 m long cavities. The laser is frequency locked
to one of the cavities; this is achieved by adjusting the laser frequency by means of a piezoelectrically
driven mirror and an intracavity Pockels cell. The length of the second cavity is then adjusted by means
of forces produced by magnets connected to the mirrors pushed by electrical coils, and maintained in
resonance with the first one by means of a servo loop. The GW signal is obtained from the
electronically recombined arm beams. With 30 mW light power the strain sensitivity [Ward et al. 1987]
was 1.2 x 107" Hz "' for frequencies greater than 1500 Hz.

The CALTECH interferometer [Spero 1986] has two 40 m long cavities; one of them is used to
frequency stabilize the laser by means of an intracavity Pockels cell and the other cavity is kept in

. . o N

o m 25 3n V't 57 6n 21 8% QgT,

Fig. 4.2. Comparison between the phase shift due to the GW amplitude / of a FP (T, < T,) and a DL interferometer having the same storage time
7,. When §2,7, > 1 the phase shifts are comparable, as is shown by egs. (4.7) and (3.16).
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Fig. 4.3. The Glasgow interferometer (from Newton et al. [1986]). One of the two 10 m FP cavities is used for stabilizing the laser; the other is, via a
feedback system, kept in resonance with the laser frequency. The GW signal is contained in the feedback signal.

resonance with the first one by means of forces applied to the mirrors. The strain sensitivity with a light
power of 2mW was h=5x 10" Hz™"/? [Spero 1986].

Optical recombination of the two beams has been achieved in Orsay by Man et al. [1986] with a
phase sensitivity of 1.5x 10 ®rad Hz™""%

5. The noise due to photon counting errors and recycling

In section 3 we have shown how the phase fluctuations in the two interferometer arms produce noise;
in particular the fluctuations of the photodiode currents [see eq. (3.5)] Al have been considered as a
source of photon counting errors. But also if ALy, =0 (n=1) the interferometer’s output current still
fluctuates. To explain this fact it was necessary to make an accurate analysis of the photon beam-beam
splitter interaction.

Two approaches lead to the same result: in the first [Edelstein et al. 1978] the beam splitter is shown
to create two anticorrelated photon beams having n, and n, photons each, in such a way that the
difference of the photon number fluctuations An, and An, in the two beams does not cancel even when
n, = n,. In the second approach [Caves 1980] the zero point vacuum fluctuations of the photon field
entering from the open beam splitter port (see fig. 5.1) produce anticorrelated photon number
fluctuations in the interferometer arms.

The rms fluctuations An’ = n, produce both phase noise A¢p.=1/vT7, where n=n, + n,, and a
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Fig. 5.1. The light field vacuum fluctuations entering the unused port of the beam splitter BS produce the anticorrelated intensity fluctuations in the
interferometer arms.

fluctuation in the differential radiation pressure on the interferometer’s mirrors, which produces the
differential momentum AP = v (hy,/c) 2N.
The equivalent displacement noise producing the phase shift Adp. is Axp. = (Adp/2N)A/41r; hence

in the measurement time ¢ the total displacement \/Axf,c + (AP t/2M)* is minimum when

W=(4N>)"'Mc*wt* . (5.1)

The existence of this optimal laser power relies on the fact that the photon number fluctuations are
anticorrelated in the two interferometer arms. The minimum displacement is

Axy, = VRAmIIM (5.2)

which is very close to the standard quantum limit for the accuracy with which the displacement of a
mass M can be measured in a time ¢.

As we have seen in section 3, in a multireflection interferometer the h sensitivity, with respect to the
photon counting error, increases with the number of reflections, with the arm length and with the
effective detected power. Using eqgs. (3.2) and (3.16) we see that the best sensitivity in & for a DL
system is obtained when 7, = 3T,

N 1 hy,
PLT 25T, VN qWT,R™’

h (5.3)

where T, is the GW pulse length.
If the GW is periodic the sensitivity increases with the square root of the number of cycles observed.

If 30,7, <1, eq. (5.3) becomes

1 hy, 5
g 4
hDL> wTS 1"thellN . ( )

Analogously for a FP system, from egs. (3.2) and (4.7) we obtain
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1T+ 715 R VI+ 07 [hy,
R

FP < 21 1L 2 Ts 77Wt '

For T,<T,, (R,/R,)"*=1, and £,7,> 1, eq. (5.5) becomes

1 | hy, -
hFP > ETg 7]WT = hDL . (56)

g

The difference between eqs. (5.3) and (5.6) lies in the fact that for the FP case, unlike the DL case, the
maximum sensitivity is obtained for any 7, >1/0,. If 2,7, <1, eq. (5.5) becomes

1 hy, -
Moo > Jor NaWT

It has also been shown [Edelstein et al. 1978] that maximum sensitivity occurs when the signal is
taken from one of the photodiodes with the illuminating beam brought to extinction. The argument
runs as follows. Equation (3.4) gives the current

hy, - (5.7)

N—

I_=3L[1-cos(g, + @], (5.8)
the current A/, due to the signal being
AL = 31,(sin ¢,) @, .

The current fluctuations are the sum of the Poissonian beam fluctuations and the statistical fluctuations
due to the diode detection inefficiency 1 — 7 [see eq. (3.5)], i.e.,

1,(1—cos ¢,)

AL = e[nl,(1 - cos @) /2t + (1 —n)I,(1 — cos @) /2t] = ¢ T—p—= —— (5.9)
where ¢ is the measurement time. The measurability condition for ¢, reads AI> = AI°, hence
A hy,
h> \/ 2 , 5.10
ANmL Y cos™(3¢)WR" "t G-10)

which is minimum for ¢, =0 [see eq. (3.6)], i.e. when the beam is extinguished.
From this condition, using eq. (3.4), putting ¢, — ¢, = ¢, <1 and with ¢, = (4Nw/A)h(t)L <1, it
follows that the two light beams have the intensities

W, = JR*™W[1 = (cos ¢, - ¢, sin ¢,)] , (5.11)

where we have chosen the relative fixed phase in such a way as to have W, = R*"W going toward the
laser. This light can be recycled [Drever 1982] according to the scheme of fig. 5.2. In this arrangement
the beam W, is recycled by means of the mirrors BSR and MR. The position of the latter, and hence
the phase shift, is changed by the transducer PZT driven by the PD2 signal.
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Fig. 5.2. The beam W_ can be brought to extinction by means of the Pockels cells PC; then W, is maximum and can be reused when MR gives the
right phase shift. This is obtained by displacing MR by means of the piezoelectric transducer PZT driven by the signal of PD2.

To evaluate the power increase due to recycling in a DL, let us consider that the typical energy loss
per cycle is

AW=(1-R*"MW . (5.12)
The maximum sensitivity in a DL system occurs for 7, = 1/(2v,) and since

R*™=1-2(mc/L2,)(1- R*)/2, (5.13)
it follows that

Wp = WL /mc(1 - R?). ‘ (5.14)

Hence, from eq. (5.13) it follows that the overall power gain is a function of (2, and the sensitivity in s
[see eq. (5.3)] becomes

Z
(1~ R} e 1 [hAm(1-R%)y,
I _ PR SatidS — ¢ 515
(hpL)r L, bLo 2 R4N17WL411'Tg (5.15)

Let us now evaluate the analog of eq. (5.14) in case of a FP system. The schematic diagram of fig.
5.3 shows that in the FP recycling scheme the recycling mirror MR is positioned directly in the laser
beam. The correct phase, obtained by driving the PZT with the signal of the photodiode PD2, gives a
minimum signal in PD2. In analogy with the DL system we evaluate the light power lost in the mirror
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Fig. 5.3. The power recycling scheme for a FP interferometer. In analogy to the scheme of fig. 5.2 the signal of the photodiode PD2 is used to
displace the mirror MR in such a way as to have minimum illumination of PD2.

collision; let us suppose that T, < T; in this case the reflected amplitude is, at optical resonance,

. “RARI+T]

A, R ol - (5.16)
Using the equation R’ + T2 + B =1, it follows that

A =A1-BY(1-R)Ji. (5.17)
In a single mirror hit the power loss is

AW=-W-2B%/(1-R,). (5.18)

Hence, if we attribute the whole loss to the near mirror, the power enhancement due to recycling
should be

W, =W(1-R,)/2B}. (5.19)

Since the storage time in the cavities should be comparable to the recycling time and because it is
convenient to have {7, =1, it follows that

2L VR,R, 1

S T-RE O

(5.20)
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Since, for the sake of simplicity, we have put R, =1, then

1-R,=2LOc. (5.21)
This gives
We=WLQ/cB},  (hgp)p = hpp(Bic/LO)" . (5.22)

Experimental results on power recycling have been obtained by Riidiger et al. [1987] using a simple
0.3m arm DL interferometer having 2N =2. A recycling factor of up to 15 was obtained with a total
power of 2 W.

Similar results were obtained in Orsay (Man et al. [1987]). It was shown that the recycling factor was
limited by the loss in the Pockels cells situated in the arms of the interferometer. Better results were
obtained later using the external modulation technique (see below).

It has been pointed out [Ruggiero 1979, Drever 1981] that it is possible to increase the signal phase
shift by allowing the photons to go synchronously with a periodical GW from one cavity to the other,
when the cavities have 7, = m(2n + 1) /42, (n integer). This method is called synchronous recycling (SR).
The laser beam (see fig. 5.4) is split by the mirror M and the light enters the two DLs from M,; in M,

|
b g
X Nozo
. —— )
~ \ R
‘ L1’ o =
M
4\
A
A2
LASER > >
L2

Fig. 5.4. Scheme of synchronous recycling for a DL interferometer. The laser beam enters the beam splitter M, and is switched, synchronously with
the GW period, from one DL to the other. The photons can increase the phase shift due to the GW according to the number of switchings
depending on the optical losses.
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the light is switched from one DL to the other; M, is connected to M,. The two beams entering the DL
experience opposite phase shifts due to the GW; they then come out after having interfered on M,
(beams A, and A,) and are finally recombined by M, and observed by the photodiode PD1.

The reflected amplitude is easily evaluated considering the ensemble of the two cavities and of the
mirrors M,, M, as a generalized reflector [Vinet 1986, Vinet et al. 1988]. If the two cavities have
transfer matrices G and G’, then the equations for the reflected amplitude, according to fig. 5.5, are

A =irA,+1L,A,, A =tA,+irA,, A,=iZr,GG'A,, (5.23)

where Z = exp(iw, &;_, I/c), G, G' are the DL matrices of eq. (3.13) and iR, and ¢, (i = 1, 2) are the
reflectivity and transmittance of mirrors M, and M,.
From eq. (5.23) we can obtain the generalized reflectance,

S=(r,+0,r,GG'ZY1+rr,GG'Z)™", a=r’+7. (5.24)

The relevant matrix elements are §,,,5,,, 5;,, but to evaluate the effect of the resonance we can
consider §,,,

-2
5, = —2frze WOV Ry 267) (1= i,z ) (5.25)
where b= (-r)""'p"x", y = exp(if2,L/c), r and p are the reflectivities of the near and far DL mirrors,
respectively.

Making Z = +1 and x"” =1 we meet the resonant condition for the ring cavity; from eq. (5.25) it is
evident that due to the synchronous recycling, the amplitude goes to zero when {2 — 0. A resonance
occurs when 32" =1, i.e., v, = 7, = ¢c/LN. Putting v, = 5, + Ay, eq. (5.25) becomes

2%
t, ot 1 1
S, =(-1)" — — . , 5.26
2 =D 1-r,r,b® mry (1+iAy, 7°2m) (5.26)
GI
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Fig. 5.5. The synchronous recycling scheme considered as a generalized reflector. A, and A, are the incident and the reflected fields, respectively.
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where 7* = 7.r,r,b"/ (1 — r,r,b") is the recycling storage time. Since the resonance condition is satisfied
for v, = ¢/4LN = Ay, where Ay, is the cavity free spectral range, S, is at resonance too.

As an example we may evaluate the difference between a normal DL and a SR DL, both fulfilling
the condition », = 1/(27,) as a function of Ay,/y,. From eq. (3.7) the matrix element D,, in the limit
.L/c <1 becomes

D,y | =/, (5.27)

Similarly we obtain for §,,

2 —
w ’B Av, 2#B\*17'?
S |l=—= ——=— [1+(—g——>] , B=rrb*. 5.2
| 21| ‘Qg 'nrl(1~B)2 Vg 1_B r1r2 ( 8)

Equation (5.28) is valid under the condition {Av,| <1/(477) or |Ap,/v,| < 1/ (27r)

In fig. 5.6 |D,,|2,/w and |S,,|2,/w are plotted as functions of Ay, /v for £2=10"? and B =0.99. The
maximum of |S21|() /w having the value ¢B/[wr,(1 — B)’] =30, has to be compared with |D, | /w =
1; at this gain increase one has the reduced band width (HWHM)

1 - B -3
AVg=2Vg\/§m=iSX10 v

The SR for the FP case can be evaluated from eq. (5.23) and eq. (4.3) by putting G=F, r, =r,,
t,=t,, I, =1, and I, =1,. The layout, shown in fig. 5.7, corresponds to a system of three coupled FP
cavities. If the gravitational frequency is equal to the difference of the symmetric, v, and antisymmet-
ric, v,, mode frequencies, when the middle cavity is antiresonant (Z = —1), then the GW will be able

E%;nzﬁéhma_u
vg

Fig. 5.6. Comparison of the side band amplitude D,, of a normal DL interferometer to that of a synchronous recycling DL interferometer, S,,. If
the intensity transmittance £, = 107 and the overall reflectance B = (.99, then at resonance the sensitivity gain with respect to a normal DL is =30.
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LASER 4 ,V

Fig. 5.7. The synchronous recycling scheme for a FP interferometer. If the GW frequency v, is equal to the difference of the symmetric and

antisymmetric mode frequencies when the middle cavity is antiresonant, then the GW may transfer energy from one mode to the other if
v, = 1/(mr,).

to transfer energy from one mode to the other if », = 1/(77,), i.e.,
v~ =y, =1/(71),

where 7, is defined in eq. (4.6).
The matrix element S, [see egs. (5.24), (4.4) and (2.29)] is

STET) ¥z

A2 g2p2 2
Su= R = e Pw)Pw+ 0,) (5.29)

P(w)=(1+ R,R, ™" Y + A Z[R, + (R} + T})R, """ (5.30)

Let us assume an antiresonant (Z = —1) middle cavity; if 7> < R> a maximum of | S5, is obtained when
N 2
w=%(zn+1)%’—§- ninteger, () = —==2=12 (5.31)

Due to eq. (5.29) only one of the two sidebands S,, and S, can be made to resonate [S,, would require

®=(2n+1)smc/L + £,/2] and this gives a S/N ratio V2 worse than in the SR for the DL case. In an
analogous way to eq. (5.26) we obtain

- tfa)f 1 1

U+ ra, 2r, 1 +2im(Ay,)7° (5.32)
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where
Auy=v,~U(mr),  a,=[R, - (R} + THR,J/(1- RR,)=~1
T= 2rf|a0|*rs/(1 +r,7,0,)

is the recycling time. A comparison of |S;,|,/w and |F31|.() /w [see eq. (4.4)] as a function of Ay, /v,
under the conditions T, > T, and (2, =2/7, assuming ££=10"? and rla, = —0.99, is shown in fig. 5. 8

Non-resonant recychng can be also performed with a detuned FP cavity [Vinet et al. 1988] with the
purpose of increasing the cavity reflectivity. If an FP cavity is pumped with the laser frequency equal to
the tuned optical frequency plus »,, the S/N is slightly worse than in the tuned case but the reflected
intensity is closer to the incident one This allows a larger power recycling rate and a S/N ratio closer to
the SR case.

Finally in the dual recycling scheme [Meers 1988] (see fig. 5.9), a simple interferometer composed of
a beamsplitter BS and far mirrors M, M, is brought to both signal and intensity resonance by means of
the mirrors M; and M, respectively. The sensitivity gain is similar to that of SR but the advantage is
that, unlike SR, the interferometer arms do not need to be in resonance with the GW before recycling.
The tuning of the sideband to the GW frequency is done by moving the mirror M,; this operation does
not change the power stored because the beam on M, is at the extinction point but allows the sideband
amplitude to build up.

~Ave
ve

\ L ] 1
+ —+ T T

V_'3__

(1+r,2a,) LEY > (11, %a,)

Fig. 5.8. Comparison of a normal FP and a FP with synchronous recycling. The amphtude |F, |2,/ w refers to the former while |S;,|2,/w refers tc
the latter. In both cases 7, = 1/(av,). The band width (HWHM) is Ay, = = 3V3(1 + rig,)y,.
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M

Fig. 5.9. In the dual recycling scheme both carrier and sideband are brought to resonance by moving the mirrors M, and M;, respectively. The S/N
ratio is similar to that obtained with synchronous recycling with the advantage that the interferometer storage time before recycling does not need to
be comparable with the GW period.

6. Laser intensity noise
The laser power can be represented as
W(t) =W, +8W(1), (6.1)

where W, is the mean power and 3W(¢) is the instantaneous power fluctuation. The current I_ of eq.
(5.8) refers to an ideal case where the optical elements have no losses; in a realistic case we have
w()

hv

W(t
I_=e—(l[A—Bcos(go0+<ps)], I, =e

T [C+ Dcos(¢, + ¢,)], (6.2)

where A=B=0 and C=D =0 are coefficients close to the detection efficiency 7 and in general
unequal, ¢, =4NwhL/A and ¢, is a given phase.
It is then evident that, since A # B, then /_ #0 when ¢, =0 and this produces the noise

AI_=38W(t) (A - B)elhv.

The power spectral noise 8W(w) /W, typically reaches the shot noise limit Vhv/W for frequencies larger
than ~10’ and ~10° Hz for A, [Winkler 1977, Ridiger et al. 1981a,b] and Nd:YAG lasers, respec-
tively.

Hence it is possible to modulate at high frequency the relative phase of the interferometer arms
[Weiss 1972] by means of Pockels cells, as shown in figs. 3.5 and 3.6, and then synchronously detect the
signal. This phase can be represented as

Ou = ey Sin @yt + @,(1), (6.3)
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where ¢,, and w,, are the amplitude and frequency of the modulation and ¢y(¢) is a slowly varying
phase, with respect to w,,, determined by the feedback (FB) loop in such a way as to minimize /_.
Introducing eq. (6.3) in eq. (6.2) and retaining terms up to sin(w,,¢) we obtain

AU

L hy

[A - Bcos(e, + ¢, + @) Jo(em) = 2B sin(e, + ¢y + @) J1(£p) sin(ey?)] (6.4)

where J, and J, are Bessel functions. The synchronous detection gives

t+T

U=% f I_(¢) sin (wyt) dt

EhKv” {[A — Bcos(p, + ¢ + @) Jo(e0)] §W_‘§/‘;’i) — Bsin(g, + ¢, + @) ]l(gM)} , (6.5)

I

where 8W(w,,) is the spectral density of the laser power noise evaluated at the frequency w,, /27 and
the integration time satisfies the inequality 27/wy, < T <1/,
It is possible to drive the Pockels cells with the low pass filtered signal U with the purpose of keeping

N
LASER

\

{
\Z

Y,
CDLI

& s

Fig. 6.1. The external modulation scheme: a small fraction of the incident power is sent through the Pockels cell PC to interfere with the outgoing
amplitude A containing the GW signal. The PC is modulated at a frequency where the laser amplitude noise reaches the shot noise. Synchronous
detection gives the signal S.
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I_ close to extinction, hence minimizing the photon counting noise; in the limit of very large loop gain
this gives ¢, = — ¢,. From this condition and from eqs. (6.4) and (6.5) it follows that the currents due to
the signal (Us) and to the noise (Uy) are

eW,
US =- —h_ B‘Ps‘] (EM)
(6.6)

W(“’M) \

Un={ (522 14 - Bie) % (- Bia]

The last term on the r.h.s. of Uy is due to the photon counting noise. The best value of ¢,, maximizes
the S/N ratio, or equivalently the quantity J,(¢,,)/ Uy [Shoemaker et al. 1987a].

It should be emphasized that in FP interferometers laser frequency fluctuations with respect to the
cavity resonance frequency induce intensity fluctuations due to the narrow resonance width, and hence
low frequency noise in the mirrors. To overcome this effect a precise locking of the interferometer to
the laser frequency is needed.

In a large kilometric interferometer the beam size will be of the order of 10™' m with the purpose of
minimizing the size on the far mirror; this implies the use of Pockels cells having large aperture,
impractical for being carried by the test masses. This requirement can be circumvented using an
external modulation scheme, shown in fig. 6.1, in which a small fraction of the incident light is sent
through a Pockels cell to interfere with the beam containing the GW signal. The Pockels cell is
modulated at a frequency where the laser amplitude noise has reached the shot noise; the signal is
obtained by making synchronous detection with the modulation signal. In this scheme the noise is =V2
times higher [Man 1988, Paris, Orsay, Pisa, Napoli, Frascati Collab. 1988] than in the internal
modulation one, but the external modulation has the advantage of bringing a net sensitivity improve-
ment because it enhances the recycling factor.

7. The noise due to the laser linewidth

Laser frequency fluctuations produce phase noise in an interferometer with arms having unequal
length. If », and Av are the laser mean frequency and the r.m.s. frequency fluctuation, respectively,
then the r.m.s. phase fluctuation due to the difference in arm length AL is

Ap=2mAvALlc. (7.1)

It is then very important to avoid that rays having large AL interfere.

In a multipass DL interferometer the light hitting the mirrors is scattered by the reflecting coating
and enters the optical path of one of the other DL beams. This phenomenon, even if the scattered
beam intensity is of the order of £=10"*-10"" of the incident one, may create a large background
because the interference of the scattered beam with the main one has an amplitude proportional to V.

Different methods have been adopted to get rid of this phenomenon [Schilling et al. 1981, Schnupp
et al. 1985]; one method [Riidiger et al. 1981a, b] consists in “whitening” the laser light spectrum in
such a way that rays having a different path length create a phase shift having an r.m.s. value equal to
Zero.
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A more precise evaluation of this noise can be made supposing that the laser frequency fluctuations
can be taken into account by means of a random phase ¢,(¢) introduced into the wave function
representing a monochromatic wave, i.e.,

Y= A, explint +igg(1)], (7.2)
where ¢y satisfies the correlation relation

$e(Dde (1) = 2m)" Av* g(t— 1), (7.3)
and g(0)=1.

If the wave i is split by the beam splitter and then brought to interference after reflection on the far
mirrors (at a distance L and L + AL, respectively), the intensity of the interference will be

2 — Lsﬁlf)('l:/c)N in
Txsin[@(t — Lic) — ¢g(t — (L +AL)/c) +2¢,(1)], &,(t) = ho - —_—m—.()gL/c e, (7.4

where ¢, [see eq. (3.10)] is the phase shift produced in the DL interferometer by the GW assumed to
be periodical. Since AL/c <1/Av it follows that we can expand ¢; in a Taylor series, obtaining

Tsin’[ () ALIc +2¢,(1)] . (7.5)

We can now evaluate the noise Fourier spectrum,

H 2
(@ =| 2L [ e ar | (16)
0
and compare it with the signal,
T 2
@ = |[ g,0ear a
0
where T is the measurement time. From egs. (7.3) and (7.6) it follows that
T T
|é(2)]> = (AL/c)'(27)" Av? f J g(t—1) e drdr, (7.8)

00

where the measurement time T > 1/02. Putting g(z) = [~ Q(w) e “* dw, eq. (7.8) becomes

ST @)T72 . (7.9)

(2 - 0)’

©

(P = ALIY Y & | 0(a)

—oc

Since the function sin’(x7/2)x” can be approximated with 3 Tw8(x), we obtain
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|d (D)) = (AL/c)2n) AV 32 TQ(). (7.10)

The quantity S =27\ $7 Av Q"% is measured in Hz/V'Hz and gives the linear spectral density of the
laser frequency fluctuations.

Comparing eq. (7.10) with eq. (7.7) we obtain the measurability condition for # when the DL
storage time is optimal [see eq. (3.9)],

h(4,) >

LAY I 0(0)IT . (7.11)
Equation (7.10) shows that $({2) can be measured by means of an imbalance of the arm length, AL.

The line width can be reduced by means of active systems; one method consists in operating a
reference FP cavity [Drever et al. 1983, Hough et al. 1987, Shoemaker et al. 1987a] fed with a small
fraction of the laser light phase modulated at the frequency »,, by means of a Pockels cell (see fig. 3.6).
If the laser frequency is tuned to one of the FP resonances the reflected light has the two sidebands at
frequency *w, having amplitudes of opposite sign, giving zero output in a photodiode. If the laser
frequency fluctuates the two sideband amplitudes will not cancel anymore and give a signal in the
photodiode, which can be detected synchronously. The signal is proportional to the laser frequency
displacement A v with respect to the FP resonance frequency. It can be fed to a laser intracavity Pockels
cell (for high-frequency FB) and to a PZT (for low-frequency FB), which moves one of the laser
mirrors for stabilizing the frequency. The limiting noise is the shot noise; taking it into account for a
cavity having no losses, the line width becomes

1 hy
Av= T \/W—st , (7.12)

where 7, is the reference cavity storage time, w, is the power used in the stabilization circuit and ¢ is the
observation time.

With the purpose of further reducing the laser linewidth, the Munich group [Billing et al. 1983,
Shoemaker et al. 1985] let the beam W, interfere (see fig. 3.7) with a small fraction of the laser beam,
obtaining an output from the photodiode PD2 proportional to Av L, where L is the total optical path
length in the DL. This signal and that from the reference FP were added for improving the stabilization;
in fig. 7.1 [Shoemaker et al. 1985] the upper curve represents the unstabilized laser line spectral density,
the middle curve the line spectral density reduced by means of the reference FP cavity while the lower
curve is the line spectral density when both reference cavity and the whole interferometer are used. The
final integrated line width was =3 Hz, a reduction of =10° with respect to the unstabilized one.

A frequency noise level of 12.5mHz/V'Hz was obtained with a diode pumped Nd:YAG laser,
actively frequency stabilized with respect to a reference FP cavity [Shoemaker et al. 1989].

The effects due to the laser linewidth in FP interferometers involve a more complex mechanism than
in a DL interferometer; from egs. (7.2) and (4.2) we can evaluate the reflected amplitude,

oo

A (8)=iRy(t) +iR,T? 2 (=R,R,)"W(t—2(n+1)L/c); (7.13)

n=0

putting
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Frequency Noise (Hz/VHz)

Frequency (Hz)

Fig. 7.1. The laser spectral line density before stabilization (from Shoemaker et al. [1985]) is shown in the upper curve; in the middle one the
spectral line density after stabilization with a reference FP cavity is shown while in the lower one the spectral line density is shown after combined
stabilization with the reference FP cavity and the total DL optical path.

W= | wa)e™ do

we obtain

iw(t—=2L/c)

RR; =

A () =i f dw l/,(w)<Rl e“ + R, T} (7.14)

—w®

In an analogous way to eq. (7.4), combining the A, from the two arms onto the beam splitter, the
intensity on the photodiode is

’ eiw(r—ZL/c)

ior 2
f[(Rle‘" +R,T; ol ! 1
—o 1472

iw(t-2L/c)

Jx

2

: (7.15)

R ST 0 4

+ ei‘P(Rl e +R,T}
where ¢ is a given phase shift. It is evident from eq. (7.15) that unlike in the DL case, even when
(L)ym1=(L).m,, there is incomplete cancelation of the laser line width noise unless the mirror
transmittance and losses in the two arms are equal.

In the Glasgow [Newton et al. 1986] and the Caltech [Spero 1986] FP interferometers the laser line
width is stabilized by using the cavity of one of the interferometer arms as a reference (see fig. 4.3). In
this case, since the stabilizing cavity is very long, the sensitivity to laser frequency changes is much
higher than that of a shorter reference cavity having the same finesse.

The presence of the laser intracavity Pockels cell gives non-negligible power losses; stabilization
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using extracavity phase acousto-optic modulators has been performed by Hall et al. [1977] and Camy et
al. [1982]. In an experiment [Kerr et al. 1985] the use of an extracavity electro-optic modulator yielded
a typical laser frequency fluctuation of =0.01 Hz/V Hz at 1kHz.

8. The noise produced by the lateral beam jitter

If the beam splitter is not symmetrical between the two interferometer arms, but deviates by an angle
da, then a lateral beam jitter 8x will produce the phase shift [Billing et al. 1979]

Ap=28adx4m/A. (8.1)

Two methods have been adopted for reducing this type of noise: the first uses a mode cleaner
[Ridiger et al. 1981a, b, Meers 1983], while the second, a simpler one even though 30-50% of the laser
power is lost, is the use of a monomode optical fiber coupler as suggested by R. Weiss of MIT. The
experimental set up, shown in fig. 8.1, consists of a monomode fiber lit by a microscope objective; a A/2
plate placed before the fiber and a linear polarizer placed behind it keep the right polarization. In fig.
8.2 [Shoemaker et al. 1985] the residual lateral beam jitter is shown as measured by a position sensitive
diode: the top curve represents the laser beam jitter, the middle one the beam jitter after a mode

OF

LASER f—x |
a2 M MoP

Fig. 8.1. The laser beam jitter is strongly reduced by injecting the beam in the monomode optical fiber OF. The injection is performed by means of
the microscope objective M; the A/2 plate and the polarizer P restore the plane polarization.
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Fig. 8.2. The lateral beam jitter (from Shoemaker et al. [1985]) as measured with a position sensitive diode; the upper curve is the unfiltered laser
beam, the middle one represents the beam jitter after a mode cleaner and the lower represents the jitter after a monomode optical fiber.
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cleaner and the lower one the beam after the monomode fiber; a displacement of ~10~"" m/VHz for
v >100 Hz was obtained.

A recycling cavity would filter out the fast laser frequency and amplitude fluctuations, as well as most
of the beam geometry jitter.

9. The noise due to the gas pressure fluctuations

This type of phase noise originates from the fluctuations of the refractive index in the interferome-
ter’s vacuum pipes. The laser light bounces between the mirrors of either the FP or the DL system; the
number of gas molecules contained in the light pipe then fluctuates almost in a Poissonian way (there
may be convective motion also), hence varying the refraction index [Brillet 1984, 1985, Hough et al.
1986].

This can be shown as follows: if V is the average light pipe volume (not the vacuum pipe diameter),
the total number of gas atoms in this volume is

n(t)y=Vv 2 ’—”% =V 2n(0), (9.1)

where p, and m, are the density and the mass of the ith gas component and n,(f) the instantaneous
number of molecules of the ith gas component. The number fluctuations dn,(¢) of the ith component
satisfy the correlation relation

5,0 o (0) =g (1~ 1), 9.2)

where 7; and g; are the average number and the correlation function of the ith gas component,
respectively, with the condition g,(0) = 1.

The function g, is a complex function of the light beam geometry; let us for the sake of simplicity,
approximate the light pipe volume by a cylinder having length L and diameter D. Under this condition
the correlation time is D/V,, where V. is the speed of the molecules of the ith gas component. The light
phase shift due to the gas refraction index ¢, is (we are considering a DL)

47NL

do()=—— 2 [ -1]. (93)
The phase fluctuation 3¢y is
o) = TN 3 20 oy, 0.4

In 0 space, using eq. (9.2), the noise is

T T

1866(2) 5, =m>2 2 j em(’_”j (&, *1_);_57"0— ) arar (9.5)

i

(1] 0

where T is the measurement time.
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Assuming the simple correlation function g(t — t') =1— 6(|t — t'| - D/V,), & — 1 = a,P,/ P,,, where P,
and P, are the pipe and atmospheric partial pressure, respectively, 7, = P,iwD’L/KT (T is the
temperature), eq. (9.5) becomes

. 47TNL>2 2sin(2D/V,) . KT
B ()| = ( A Z 0 I(a;P;/ Py) 2NP,%77D2L . (9.6)
The h measurability condition for a DL interferometer is [see eq. (7.6)]
. sin 2DV, ( a )2 KTP, ]”2 NL0
o (2)> [162,.: 0 \P,) NaDL] csmnQNLlc" ©.7)

For a FP interferometer working at optical resonance we obtain the following result [for theWefinitions
see egs. (4.2) and (4.9)]:

_ T sin(2D/V)) 1 1
2 — 2 L/ - 2? i .
Boo(lie =2 V8 TIR(LIOG -V 7 —5 g trpanane. OY

Comparing eq. (9.8) with the Fourier transform [see eq. (7.7)] of eq. (4.5) we obtain the measurability
condition

. (¢,— 1)’ sin(2D/V,)\"?
thz(Ei:z - 5 :

{

(9.9)
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Fig. 9.1. The limits on the spectral strain amplitude for a FP interferometer having arm length L = 3 km, as given by the pipe vacuum fluctuations in
the frequency interval 0 < v < 10° Hz and for three pressures, a, p = 10™° mbar, b, p = 10~ mbar, ¢, p = 10~° mbar. The dotted lines are for N, and
the solid lines are for H,.
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I;FP is larger than ﬁDL because the light pipe volume in the FP case is 2N times smaller than that of the
DL.

In fig. 9.1, hgp is plotted as a function of the pressure for H, and N, in the frequency interval
0<»<10’Hz.

A calculation taking into account a better approximation of the correlation function has been
performed by Ridiger [1988].

10. Thermal noise

The mass of the mirror is driven by the stochastic forces produced by thermal noise; we are
considering here both the forces acting on the mirror suspensions and those producing an excitation of
the mirror normal modes. .

For the former case, if 7 is the mirror suspension relaxation time, the r.m.s. stochastic spectral force
is [Uhlenbeck and Ornstein 1930]

2KTM N
F=\ :
T  VHz (10.1)

where M is the mirror mass, T the temperature and K the Boltzmann constant. The thermal stochastic
force f(t) satisfies the correlation relation

fOfE) = F8(t-1). (10.2)

The mirror displacement x(£2) in {2 space is evaluated using eqs. (2.17) and (10.2); in analogy with eq.
(7.7) we obtain

2KT 1

2~
. !2 = 1T
|x1( )l MT (02 é)Z 02/7_2 s

(10.3)

where T is the measurement time and v, = w /27 the pendulum frequency. The pendulum ther-
mal noise gives the following limit on the measurability of A:

. 1 [2KT <1
h>.()2L —M—E; (10.4)

where the sum is over the mirrors.

With the purpose of evaluating the thermal noise produced by the mirror normal modes we can
approximate the mirror by many harmonic oscillators each having frequency »;, relaxation time 7, and
equivalent mass M. In the proximity of the ith frequency the displacement in {2 space is sufficiently well
described by eq. (10.3) replacing w, with w, =27, Since we consider the frequency region », < v <y,
we can approximate eq. (10.3) in the following way:

2KT 1
M-T~ a)4 ’

[ i

(@) =T (10.5)
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700mm

T
4

Fig. 10.1. A possible scheme of a 350 kg quartz mirror to be used in a 3km FP interferometer for GW detection. A distortion <A/8 is expected to
be given by the 80mm thick quartz window. The lowest-frequency mode (bell mode) at 1900 Hz it is not expected to give longitudinal mirror
oscillations. The first longitudinal mode is at 2500 Hz.

with w;7,= Q,. The h measurability condition is

~ ] \/ ~ 1
h>— +\J2KT 2, ——, 10.
L zMiin? (106)

where the sum is over the mirrors and over the longitudinal modes.
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Fig. 10.2. The spectral strain amplitude sensitivity due to the mirror (see fig. 10.1) thermal noise in the frequency range 10 < v < 10* Hz for
interferometer arm length L =3 km. Curve a represents the contribution from the mirror pendulum motion with M =300kg and Q = 10°, while
curve b represents the contribution to the thermal noise due to the mirror longitudinal normal modes. In b only the contribution from the first
normal mode at 2500 Hz, having assumed an oscillator equivalent mass of M, = 150kg and Q, = 10°, is taken into account.



408 A. Giazotto, Interferometric detection of gravitational waves

Assuming Q, to be invariant under a scale transformation changing the mirror dimensions, it follows
that eq. (10.6) is invariant too. This is not true anymore for eq. (10.4), which shows that an increase in
the mass M reduces the thermal noise. At low frequency it then seems convenient to use mirrors
weighing several 100 kg if possible.

The scheme of a possible 350 kg quartz mirror to be used in the 3km FP interferometer of the
VIRGO project [Pisa, Napoli, Frascati, Orsay, Paris Collab. 1987, Paris, Orsay, Pisa, Napoli, Frascati
Collab. 1988] is shown in fig. 10.1; the quartz window is expected to give <A/8 error to the wave front.
The lowest frequency mode at =1990 Hz (bell mode), due to the cylinder hole, does not give a
longitudinal oscillation to the mirror; the first longitudinal mode is at 2500 Hz.

The values of % given for this kind of mirror considering that four mirrors will be mounted in the
interferometer and assummg Q=w,7= 10° in eq. (10.5), Q,=10% in eq. (10.7), L =3km and
T =300K, are shown in fig. 10.2 in the frequency interval 10 < v <10* Hz.

11. Seismic noise

Seismic noise is the dominant source of displacement of the mirror suspension points. The r.m.s.
spectral displacement can be sufficiently well approximated by the formula

xr=alv’m/VHz, (11.1)

where a=107° at a depth of ~10° m up to a=107° at the Earth’s surface in a relatively quiet place.
Extensive measurements of the Earth’s strain spectrum from 10~® to 10 Hz using a laser interferometer
have been performed by Berger and Levine [1974].

Experimental evidence of this type of noise [see eq. (2.13)] is clearly shown in fig. 11.1 [Shoemaker
et al. 1985]; from these data the value 2=10"" can be inferred. Active systems have been used to
reduce seismic noise both in the vertical [Faller and Rinker 1979, Saulson 1984a,b] and horizontal
directions [Robertson et al. 1982, Giazotto et al. 1986a, b]. Three-dimensional pneumatic active systems
have been developed by Lorenzini [1972].
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Fig. 11.1. Displacement noise of the Munich [Shoemaker et al. 1985] DL interferometer. Assuming the mirror to be suspended by a 1 m long wire, it
follows that the suspension point is approximately shaken by a spectral seismic noise displacement Ax = 10""/v* m/VHz.
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The basic idea consists in using an accelerometer to sense the displacement of the suspended mass,
then using the accelerometer signal to create a force on the mass in such a way that the signal becomes
null. In the experiment of Faller and Rinker, a sensor measured the elongation Ay of a vertical spring
with respect to a fixed reference point y,. This signal was fed to a transducer displacing the suspension
point y, by an amount y, + a Ay, where « is the amplification. This gives the spring motion equation

2
_ Yowo(l—a)
YT T it ol(l-a)

(11.2)

where y, = w,/2 is the open loop resonance frequency. From eq. (11.2) it follows that the equivalent
spring length increases by the factor 1/(1 — «); about 1 km was obtained.

In Saulson’s experiment the acceleration of the end point of a horizontal beam was measured in the
vertical direction by means of an accelerometer; the amplified signal was fed to a force transducer
acting on the beam end point. In the limit of ideal accelerometer the effect of this loop was to increase
the beam mass; the open loop 4.5 Hz resonance frequency was reduced, when the loop was closed, to
4% 107 Hz.

The layout of the horizontal direction isolation experiment of Robertson et al. is shown in fig. 11.2.
The relative displacement of the test mass with respect to the suspension point was measured by means
of condensers connected to a reference arm correcting for the effects due to the ground rotations.
Neglecting the ground rotations the equation of motion for the test mass in the horizontal x direction is

¥tx/ir+(g/lhx=xgl, (11.3)
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Fig. 11.2. The layout of an active horizontal direction seismic isolation experiment (from Robertson et al. [1982]). The relative displacement of the
test mass with respect to the suspension point was measured by means of a capacitive transducer and fed back to a PZT acting on the pendulum
suspension point. A reference arm corrected for the effects due to ground rotations. With this experiment an amplification A = 60 was obtained and
the pendulum length was increased up to =5m.
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where 7 is the relaxation time, x the mass coordinate, x_ is the horizontal displacement of the pendulum
attachment point, g is the acceleration of gravity and / the pendulum length.
Since the capacitor ¢ senses x — x,, the PZT transducer displacement is

x,=(a+Bfd)x—x)+x, (11.4)

where x; is the horizontal ground seismic noise [see eq. (11.1)] and the integral creates “cool”” damping
[Forward 1978].
From egs. (11.3) and (11.4) it follows that

o8 ) [ vnlt 22 )

From eq. (11.5) it follows that the effect of « in the FB is to make the pendulum virtual length equal to
I(1+ a) and that of B is to introduce a new damping with relaxation time (1 + a)/B. With a 0.47kg
mass and / =85 mm, a =60 on a band width of 30 Hz was obtained.

In the experiment of Giazotto et al., shown in fig. 11.3, in which a large mass (100kg) and an
interferometric sensor were used, a 1 m pendulum was brought to a virtual length of 1600 m at 10 Hz by

51 5
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Fig. 11.3. Schematic diagram of the interferometric pendulum for seismic noise reduction (from Giazotto et al. [1986b]). The relative displacement
of the 100 kg test mass with respect to the suspension point was measured interferometrically. The 1 m pendulum was brought to a length of 1600 m.



A. Giazotto, Interferometric detection of gravitational waves 411

means of an analog phase follower [Campani et al. 1986], whose purpose was to transform in real time
the interferometer output, proportional to sin ¢ (¢ is the interferometer phase shift), to a signal
proportional to ¢ suitable to be used as a FB signal. The pendulum suspension point was displaced by
both a PZT and a DC motor; the use of the latter was crucial for obtaining high FB amplification.

A method for actively reducing the damping produced by the flexure of the pendulum suspension
wire at its attachment point has been proposed and tested by Faller et al. [1987]; they obtained an
increase of 5.6 in the damping time and a lowering of the pendulum resonance frequency.

The use of active seismic isolation schemes is strongly limited by the difficulty of making multiple
three-dimensional (3D) systems; this necessity is dictated by the fact that a non-isolated degree of
freedom reintroduces the seismic noise even if the other degrees of freedom are isolated. For this
reason passive schemes have been adopted, able to isolate in the vertical direction as well [Giazotto
1987, Shoemaker et al. 1987a].

The basic idea is to use a multiple-stage pendulum with the masses supported by springs. It can be
shown that the frictionless transfer functions for both the vertical and horizontal directions can be
brought to the following canonical form:

N
F=] 0/(~02*+ ?), (11.6)
n=1

where F is the transfer function, v, = w,/27 is the nth mode frequency and N is the number of masses.
Above the resonances F« (Z_ZN, but the presence of friction and nonlinearities can give a slower
decrease with frequency as well as coordinate mixing.

In the interferometric antennas aiming to reach very low frequency (v =10 Hz) seismic isolation
requires a very careful design with the purpose of avoiding mechanical resonances falling into the
interval 10 < » =100 Hz; these are produced mainly by the springs’ rocking and normal modes.

To this end a 3D seven-stage seismic attenuator (see fig. 11.4) equipped with gas springs [Del Fabbro
et al. 1988a] has been built by the Pisa group [Del Fabbro et al. 1987]; this attenuator is able to levitate
a 400 kg test mass. The gas springs, shown in fig. 11.5, are able to levitate 10° kg with a rigidity of
3.4x 10* N/m when used with four bellows and 5 X 10> kg with a rigidity of 2 X 10* N/m when used
with two bellows; the normal modes of the bellows are damped by means of dry mechanical adsorbers.
The rocking modes are kept at very low frequency (1 Hz) by making the wire attachment points very
close to each other (5 mm).

The transfer functions for the vertical and horizontal directions [Del Fabbro et al. 1988b] in the
frequency interval 10 = » <68 Hz are shown in fig. 11.6. The absolute test mass noise was measured
with a dip-coil accelerometer having a sensitivity of 10" m/VHz; fig. 11.7 shows the test mass
displacement in the frequency interval 0 < v <10 Hz together with the exciting seismic noise. Taking
the ratio between these two spectra, the transfer function measured for 0 < v < 10 Hz shows that there
is a ~1077 vertical to horizontal coupling [Del Fabbro et al. 1988c].

The general problem of cool damping [Forward 1978, Kuroda et al. 1982] of the pendulum normal
modes has been solved by means of both electromagnetic or electrostatic force actuators. In the
Munich, Glasgow and Caltech interferometers use was made of magnet and coils, while in the MIT
interferometer electrostatic transducers were used.

The basic layout of an electromagnetic damping scheme [Shoemaker 1987] is shown in fig. 11.8. The
mass position is read by means of a position sensitive diode PSD illuminated by a LED. After
differentiating the signal with respect to time, which produces an effective viscous force, it is applied to
coil C producing a force on magnet M connected to the test mass.
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Fig. 11.4. Schematic diagram of the seismic noise attenuator (from Del Fabbro et al. [1988b]). The two attenuators, composed of a 7-fold
three-dimensional harmonic oscillator, are able to give isolation in the vertical direction as well. The 400 kg test masses contained in the vacuum
chamber are also shown. This device is able to attenuate the seismic noise in the vertical direction by a factor of =2 x 107® at 10 Hz.
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Fig. 11.5. The schematic diagram of a gas spring (from Del Fabbro et al. [1988a]). The gas pressure pushes the bellow piston, which levitates the
load attached to the lower wire. A rigidity of 34 x 10° N/m with four bellows and of 20 X 10° N/m with two bellows was obtained.
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Fig. 11.6. The vertical and horizontal TF for the seismic noise attenuator of fig. 11.4 (from Del Fabbro et al. [1988b]) in the frequency interval
10 =< » <68 Hz. The excitations were applied to the second stage in the chain; hence these plots give upper limits. At 10 Hz the vertical-horizontal
(V-H) TF was <2.8 x 10~%, while the horizontal-horizontal (H-H) TF was <5 x 10™°. An extrapolation to the suspension point excitation gives at
10Hz, V-H=3x10"° and H-H<2x 107",

A low-pass filter (LPF) prevents the damping system to reintroduce seismic noise. This problem,
which is easily solved for interferometers designed to work at high frequency (» =200 Hz), becomes
crucial for those aimed to work at low frequency. In the Pisa attenuator, having normal modes for
v < 6 Hz, it is necessary to have an LPF cutting the FB at 10 Hz not giving instabilities; this is a complex
problem to be solved. A six-dimensional damping system using PSD has been built to reduce the
amplitude of the 0.24 Hz pendulum mode of the Pisa attenuator; an absolute displacement of the test
mass of =3 pm was obtained [Bradaschia et al. 1989]. The use of accelerometers instead of PSD could
prevent the injection of seismic noise.

Seismic noise affects the interferometer phase also by means of the interaction of the mirror
scattered light with the vacuum pipe walls [Billing et al. 1983]: the scattered light is reflected by the pipe
walls and then reenters the main beam by means of a second scattering process. Since the pipe walls are
vibrating, due to the seismic noise, they change the phase of the scattered beam; the interference of the
scattered beam with the main one then reintroduces the seismic noise despite the seismic isolation of
the mirrors. The use of diaphragms in the vacuum pipe could prevent the scattered light which hits the
pipe walls to reenter the main optical path. A thorough evaluation of the effects of light scattering and a
study of baffle configurations inside the vacuum pipe has been made by Thorne [1989]; the use of
seismically isolated diaphragms for low-frequency GW detectors has been proposed by Giazotto
[1988a].

The effects of the Newtonian forces produced by moving objects have been evaluated by Saulson
[1984a, b]and found to be negligible with respect to other type of noise at the expected sensitivity of
the new generation of antennas.
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Fig. 11.7. The displacement spectrum of the 400 kg test mass of the Fig. 11.8. Schematic diagram of a shadow meter damping system: the
apparatus shown in fig. 11.4 in the frequency interval 0=<» <10Hz displacement of the mass S is measured by photodiode PD; the time
(from Del Fabbro et al. [1988¢c]). Despite the fact that the ac- differential of this signal is applied to coil C, which creates a viscous
celerometer sensitivity is maximal in the horizontal direction, many force on magnet M.

vertical normal mode peaks are visible; a 107 mixing vertical-
horizontal was measured, showing the necessity to have the vertical
isolation as good as the horizontal one.

12. Effects due to the radiation pressure on the mirrors

As has been shown in section 5, radiation pressure creates a differential motion of the interferometer
mirrors and this effect can be easily evaluated. Since v7i = VWt/hv is the fluctuation of the number of
photons impinging on the mirrors in a time ¢, the momentum fluctuation is AP = (hy/c)VWt/hy, from
which it follows that the rms differential spectral force is given by AF = (hv/c)VW/hv.

In a DL system having 2N beams, these force fluctuations are coherently added and the measurabili-
ty condition for 4 is [see eq. (2.9)]

~ 1 2N
hDL > m —C_ Why , (121)
where W is the incident power.

In a FP cavity whose input and far mirrors have amplitude transmittance T, and T, respectively, the
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intracavity power at optical resonance is
W, =WTiFn?, (12.2)
where F= 7\/R R,/(1— R,R,) is the cavity “finesse”. If T,> T, eq. (12.2) becomes
W, =W(Q2/m)F . (12.3)

The fluctuations of the incident power will be coherently transmitted to the mirror for frequencies
smaller than 1/7; in this case the measurability condition for 4 is

~ 1 2F
hFP > m ‘7; VWhy . (124)

Assuming 2 =60rad/s, M=4x10"kg, L=3%x10°m, hv=10""J, (2/7)F=2N=30 it follows
from eqs. (12.1) and (12.4) that

~ ~

hp, =hpp=2X10"°VWHz "2, (12.5)

Equation (12.5) shows that kilowatts of power can be used before reaching the photon counting limit of
eq. (3.2).

In a FP interferometer the radiation pressure can create multistability; this phenomenon was
experimentally observed in a cavity composed of a fixed mirror and a 60 mg moving suspended mirror
[Dorsel et al. 1983]. When the intracavity power reached 100 mW a bistable response was obtained.

This effect has been theoretically investigated by Deruelle and Tourrenc [1984], Tourrenc and
Deruelle [1985] and by Meystre et al. [1985]. Bistability in a three-mirror system was investigated by
Meystre et al. [1985]. Following the approach of Aguirregabiria and Bel [1987] we consider a pendular
cavity as shown in fig. 12.1. The reflection and transmittance coefficients of mirror M, are R=
(cos#)e™ and T=i(sin @)e ¥, respectively; P is the incident light power, D_+ x(¢) the mirror
separation and ¢, = V' P exp[—i(27/A)(ct + @)] the incident light field. The light field ¢(f) on mirror
M, is

¢(1) = T, {t = [D, + x(t)]/c} - Re(7) , (12.6)
where the retarded time  is defined as

c(t—t)=D, + x(t) + x(f) . (12.7)
Neglecting the effects of the delay, the equation of motion of mirror M, is

i+ (Q2/Q)=—-0%+2|¢|/Mc

2P sin’
=-Qx+ 5 : 12.8
T Me 1+ cos’ +2 cos 8 [(4m/A)(D, + x) — u] (12.8)

where M is the mass of mirror M,, £2 the pendulum angular frequency and Q the mechanical quality
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Fig. 12.1. Radiation pressure displaces mirror M, from its equilibrium position. x(¢) is then a multistable function of the radiation pressure.

factor. The relative maxima of the r.h.s. of eq. (12.8), to a good approximation, occur when
x=(M4m)[2n+)m+p]-D,=x, (n=0,%1,%2,..),

as shown in fig. 12.2 The peak heights J = (4P/McQ”)(F/w), where F is the finesse, can be increased
more and more in such a way that a new peak crosses the y =0 axis and consequently a new stability
point emerges (dy/dx <0).

The delay can be taken into account writing eq. (12.6) in the following way [Aguirregabiria and Bel
1987]:

f(t) =1+ (cos B) e™s VI — 1) (12.9)

where r, is the time needed by the light to make a round trip in the cavity ending at time ¢, x, is the
equilibrium point and

flty=- \/1}(—?2:1)1 5 exp{i[27/A)(ct— D,— x+ a) + o]} . (12.10)

Iteration of eq. (12.9) gives

f=1+ 20_6‘, (cos 6 e™)" exp(i }j‘, (X — xs)) , (12.11)

where x,,=x(t— Jr) and r=2D/c.
The equation of motion of the pendulum becomes

i+ (02/Q)x=—-0%+(2P/Mc)sin’ 6 |f|*. (12.12)

The dominant reduction of the hereditary equation of motion, evaluated up to second order in the
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Fig. 12.2. Plot of the 1.h.s. of eq. (12.8); if the laser power P increases, the peak at x,, , , may cross the y = 0 axis, thus creating a new stability point
(9ylax <0).

displacement x(#) — x, can be put in the form [Bel et al. 1988]

Y+KY+02%=0,

1 8ry, ) 8r(1—5y%) ]
== - - 0 12.13
K [<Q g1+ y7 )y peri+y)) 1T (12.13)
i 2y 1-3y?
(22=[<1+ : >+ : ]!22,
B+yy " pa+yy

where y, =2x /0% B=0*MC/16P and Y =2[x(t) — x,]/6° . The effect of the delay is then to add a new
“friction” term [Deruelle and Tourenc 1984].
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To demonstrate the presence of chaos we write eq. (12.12) putting z = x(¢) — x_,
P+(/Q)i+z=(lg)*+2Re g)s, (12.14)
where

_2p sin” 0

e=@rN)(D,+x)-pu—-2n+1D7w, =
( X s s) p=( )m Mc 14 cos@—2cosBcos e’

) (12.15)
g=flf,—1=cos 0 { "M Ng)+1]-1}, ct-i)=2D,+x)+z+2(f).

Linearizing and then iterating eq. (12.15), eq. (12.14) becomes [Aguirregabiria and Bel 1987]

i+ g i+riz=— —/\z > Im(cos 8 e°z({,)) , (12.16)
k=1

where () is the retarded time iterated k times. Putting
z=¢eV, (12.17)
we obtain the characteristic equation

0 8 1 1
P4t — 0 —= 12.18
Mrghrtr A S oSO e R — D+ (e~ = 1) cosd] ’ (12.18)

where R=1+cos’d —2cos fcos ¢ and r=2(D, + x,)/c. Due to eq. (12.17) instability occurs when
Re A>0; hence the point Re A =0 is the bifurcation point. The power P for any r, giving rise to
instability, has also been evaluated.

In the VIRGO project [Pisa, Napoli, Frascati, Orsay, Paris Collab. 1987, Paris, Orsay, Pisa, Napoli,
Frascati Collab. 1988] having arm length of 3km, A =1 pm, power 500 W, mirror mass 400 kg, finesse
F=30 and pendular mechanical quality factor Q =10°, the retarded effects [Tourrenc, private
communication] give thie unstable equation of motion for the mirror

Y = Aexp(2 %107 ) sin(6t + ¢) . (12.19)

This instability seems to be easily corrected for by means of active feedback of the mirror damping.

13. Cosmic ray background

The interaction of particles with matter excites oscillation modes which can be experimentally
detected. In an experiment [Beron and Hofstadter 1969] the modes of a piezoelectric disc have been
excited by an electron beam containing 10*~10° particle per pulse of 1 us duration.

In a subsequent experiment [Grassi Strini et al. 1980] the interaction of 30 MeV protons with an Al
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rod 0.2m long and 3X 107> m diameter was studied. The effect was the excitation of the rod’s
fundamental longitudinal mode with an amplitude

£= ci %T‘% cos wx/L (13.1)
14

where L is the rod length, W the energy lost by the hitting particles, « the rod thermal linear expansion
coefficient, C, the specific heat at constant volume, M the mass of the rod and x the distance from the
center at which the particles cross the rod. Theoretical calculations [Allega and Cabibbo 1983, Bernard
et al. 1984] have been performed giving good agreement with eq. (13.1).

The interferometer mirrors when hit by a cosmic ray undergo both excitation of the internal degree
of freedom and of the suspension pendulum modes. The mirror’s internal degrees of freedom are
excited both by the heat produced with an amplitude given by eq. (13.1), and by the differential
momentum released by the cosmic rays. The excitation of the mirror pendulum mode by cosmic muons
has been evaluated by Weiss [1972] considering only ionization losses.

In a subsequent work of Amaldi and Pizzella [1986] the effect of production of knock-on electrons,
bremsstrahlung, direct pair production and photonuclear interactions by muons was shown to be crucial
for the evaluation of the cosmic muon noise in a bar antenna. A Monte Carlo simulation of the
background due to high-energy cosmic muons in a bar antenna has been done by Ricci [1987].

A calculation taking into account both ionization losses and the four processes mentioned for an
antenna having 3 km arm length and 400 kg quartz mirror mass, has been done by Giazotto [1988b]
The results show that muons of 10° GeV give 1 ms pulses havmg h =10~ with a frequency of 10° yr
and 10° GeV muons give h =10"*' with a frequency of 10 °yr ",

For periodic GW the calculation gives the following measurability condition for h:

-1

h>10"%" Hz V2, (13.2)

where the GW frequency » has been assumed to be larger than the pendulum frequency and smaller
than the frequency of the lowest mode of the mirror.

14. Conclusions

In this section the relevant types of noise described previously, limiting the interferometer’s
sensitivity, are evaluated as a function of the GW frequency and compared with the GW strain
amplitude of some astrophysical sources. For the evaluation of these types of noise the following
parameters characterizing the mterferometer are assumed: arm length L =3 km, FP finesse F =40,
suspension quality factor Q = 10°, mirror quahty factor Q, = 10°, temperature T = 300 K, frequency and
mass of the lowest longitudinal mode of the mlrror v, = 2500 Hz and M, = 150 kg, respectively, mirror
mass M =300 kg, vacuum pipe pressure P =10"" mb assuming the resxdual gas to be H,, recirculated
light power W= 1kW and seismic noise spectral displacement x, =3 x 10”7/»* mVHz.

In fig. 14.1 the interferometer sensitivity is shown as a function of the characteristic frequency of the
incident GW, which is assumed to be the inverse of the pulse duration of the GW, together with some
relevant types of noise and astrophysical GW source amplitudes. Line a is the sensitivity limit due to
seismic noise reaching the mirrors suspended as a simple 1 m pendulum, line b represents the limit due



420 A. Giazotto, Interferometric detection of gravitational waves

1015

T T TITTTH

1016

10717

10-18

HRERALL BNEIRRLL L

1010

AL
a

h
1020

10-21

L SR

10722 C e
10723 = e e T

10°24

0 2510 — 10! 102 - .16.13 ' HI, - I;B“

Fig. 14.1. The sensitivity to an incident GW of a 3 km arm length interferometer, whose physical parameters are defined in the text; the observation
frequency is assumed to be the inverse of the GW pulse duration. The types of noise are: a, seismic noise (1 m simple pendulum), b, seismic noise
[De! Fabbro et al. 1988b], ¢, mirror suspension thermal noise, d, mirror first longitudinal mode thermal noise, e, photon counting noise, f, pressure
fluctuations in the vacuum pipe (FP), g, quantum limit. H is the resulting interferometer sensitivity assuming the seismic noise to be given by curve
b. The expected amplitudes for gravitational collapse [see eq. (1.2)] in the Galaxy (5 = 0.1) and in the Virgo cluster (n = 0.1, 0.01) are also shown;
the amplitudes for coalescing binaries have been evaluated for (M =2 My, p =0.5) and (M =10 M,,,  =0.1), integrating over the time given by

eq. (L.4).

10723 e g
£ P 3

10-24 —%
L ]

1025 k- CRAB panpHARIPAN. _
= OE MODEL E|

h E ' b CRAB sT.mopEL §1
1028 ) -3
10-27 -
1028 e e N EINR, - o
10-29 T I YU
10 10! 102 108 we 07

Fig. 14.2. The sensitivity of a 3 km arm length interferometer, whose physical parameters are defined in the text, to periodical GW, assuming a 1 yr
integration time. The symbols are explained in the caption to fig. 14.1. The upper limits to the GW amplitudes of the Vela and Crab pulsars
[Zimmermann 1978, Pandharipande et al. 1976] are expected to be in the sensitivity range of the interferometer (curve H) if seismic noise is
assumed to be given by curve b.



A. Giazotto, Interferometric detection of gravitational waves 421

to seismic noise filtered by the attenuator described by Del Fabbro et al. [1988b], line ¢ represents the
suspension thermal noise and line d the mirror’s first longitudinal normal mode thermal noise, line e
represents photon counting noise, line f represents the noise due to vacuum pipe gas fluctuations and
line g the quantum limit.

The amplitudes of gravitational collapse have been evaluated using eq. (I.2) assuming the frequency
to be the inverse of the collapse duration. The coalescence amplitudes have been evaluated using eq.
(I.3) integrated over the time elapsed given by eq. (I.4). The total noise b +c+d +e +f + g is shown
by the line H.

The interferometer sensitivity to periodic signals integrated over 1 year is shown in fig. 14.2; the
noise symbols are the same as in fig. 14.1. The upper limits to the GW amplitudes emitted by the Vela
and Crab pulsars are also shown.
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