Knowing our Sun:

data fusion for optimizing space weather forecasts

Grant David Meadors Los Alamos National Laboratory

> 2020 November 18 LGBTQSTEMDay

Introduction

Data analysis

science of statistical analysis across data types including uncertainty

forward: cause \rightarrow effect inverse: effect \rightarrow cause

Outline

- Space weather: model for predicting solar wind & polarity
- Particle filtering: optimization with Monte Carlo
- Simulation & observation: twin tests and real data
- Back to Earth: independent work in inertial confinement fusion (ICF)

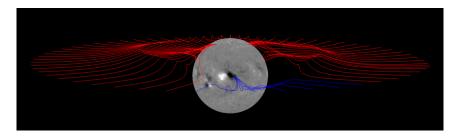
Space weather

Space weather model adaptive optimization


<u>Published</u>: Meadors, Jones, Hickmann *et al Space Weather* 18 (2020) 5

Definition

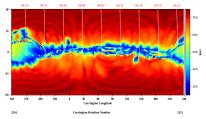
Data assimilation:


combining observation with theory to yield (better) prediction

- Wang-Sheeley-Arge (WSA): a practical Fortran model for space-weather prediction
- Space data science: particle filter/Monte Carlo – solar wind & polarity

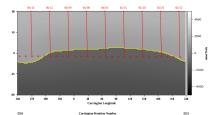
WIND satellite (Credit: NASA Goddard SFC)

Space weather: WSA as a simplified model


Solar magnetic field lines in Wang-Sheeley-Arge (WSA) model: red/blue = polarity. Kinked lines \sim unphysical \rightarrow must tune WSA

2 model parameters:

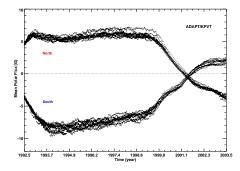
- R_{ss} = source surface radius \approx 2.6 R_{\circ}
 - R_i = interface radius \approx 2.3 R_{\circ}


Optimization: use satellite data to adaptively adjust/predict better

Space weather: predicting the changing sun

Predicted Solar Wind Speed from wsa_201904121729R000_gong.fits

Predicted Radial Field Strength at 5.0 Rs from wsa_201904121729R000_gong.fits



Solar wind (above), magnetic field polarity (below):

WSA 2019 example prediction

Space weather: changing cycles as input

Space weather environment fluctuates <u>Prediction</u> possible with models \sim WSA

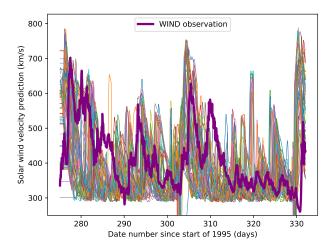
Input to WSA – 12 realizations of ADAPT global solar magnetograms (1992 to 2003) based on KPVT (Kitt Peak Vacuum Telescope) images

Space weather informed by inference

Wrap Python around operational NASA Fortran code

Reframe problem:

Solar magnetic field – a 2-D parameter space (shifting over time) What determines shape? Goodness-of-fit H to satellite data¹,


 $H = \frac{\text{avg correct polarity}}{\text{avg solar wind velocity residual}}$

Likelihood & *probability* – inaccessible: instrumental noise distribution <u>unknown</u>

Performance metric *H* is calculable

¹that is, compare WSA model predictions to satellite data (*e.g.*, WIND)

Space weather: implications for wind

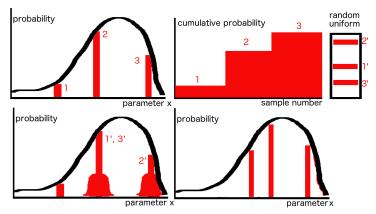
Solar wind radial velocity (km·s⁻¹) at L1 (WIND: 1995-09-29/1995-11-24) for ensembles of varying (R_{ss}, R_i) – close fit $\propto \uparrow H$

 \rightarrow How many *H* samples to tune (R_{ss} , R_i) optimally?

- ... WSA (R_{ss}, R_i) may vary fast or slow
- \implies metric behavior uncertain

Data assimilation

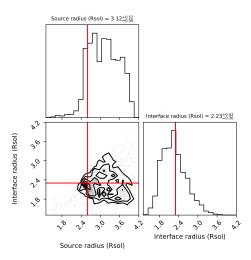
take samples evaluated on time window 0


ightarrow apply (re-)samples to next time window 1

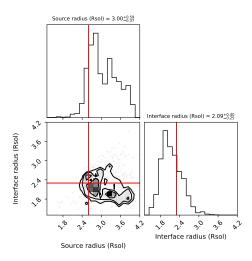
requires slowly-evolving data \implies sample density grows at peak

Optimization process assures model performance with continual measurement, which iteratively tunes model

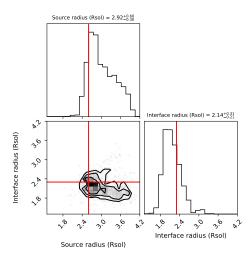
Of performance metrics and particles


 \implies ideal for particle filter (sequential Monte Carlo) (like ensemble Kalman filter, applicable to terrestrial prediction)

(upper left) iteration 0: samples, (upper right): calculate total & resample (lower left): perturbation kernel, (lower right) iteration 1: evaluate Space weather (simulation)

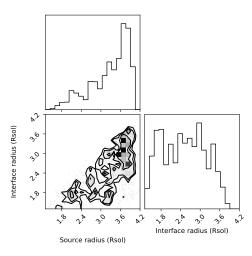

Simulation

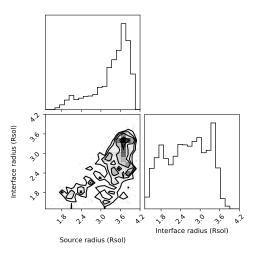
Space weather (simulation): filter, window 0

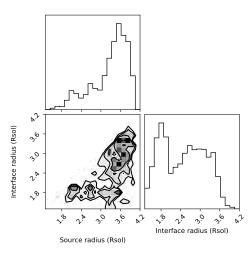

'Twin' experiment at $(R_{ss}, R_i) = (2.6, 2.3), 512$ samples, 7 days particle filter (true value marked by red crosshairs)

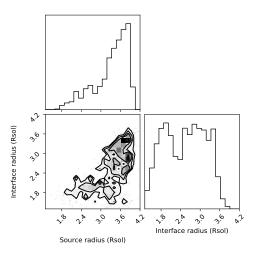
Space weather (simulation): filter, window 1

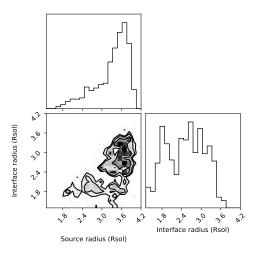
'Twin' experiment at $(R_{ss}, R_i) = (2.6, 2.3), 512$ samples, 7 days particle filter (true value marked by red crosshairs)

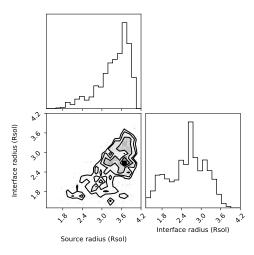

Space weather (simulation): filter, window 2

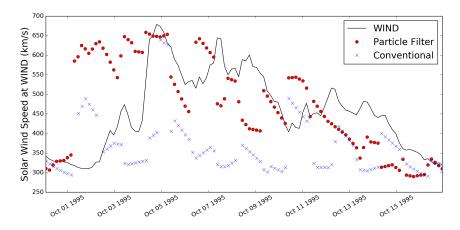



'Twin' experiment at $(R_{ss}, R_i) = (2.6, 2.3), 512$ samples, 7 days particle filter (true value marked by red crosshairs)

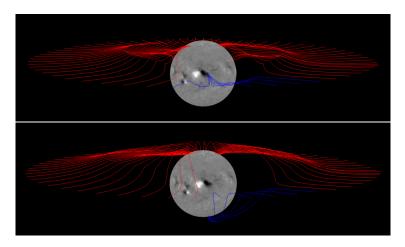

Space weather (real data)


Real data





Analysis: comparison (solar wind)


Solar wind radial velocity vs time for 2 weeks wrt WIND satellite data comparing standard (R_{ss} , R_i) = (2.51, 2.49) to filter optimum (3.9, 3.4)

Analysis: comparison (performance metric)

Metric *H* (higher = better) vs time for 2 weeks wrt WIND satellite data comparing standard (R_{ss} , R_i) = (2.51, 2.49) to filter optimum (3.9, 3.4)

Solar magnetic fields with better model results

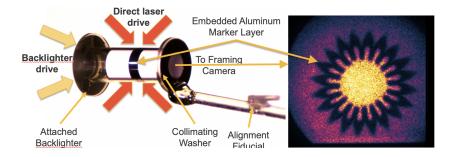
Solar magnetic field lines traced at standard values (TOP) and at possible particle-filter optimum, $(R_{ss}, R_i) = (3.50, 2.51)$ (BOTTOM): smoothness \implies greater physical self-consistency (+ accuracy)

Summary of space weather

- (given base of NASA code, encapsulate in Python),
- Optimization: satellite observations, combined with particle filtering, can *tune* corona → solar wind models, & optimize parameters ⇒ ↑ sensitivity
- Widely-used WSA space weather model now adapts & evolves in time,
 → operationalization being studied by NOAA

Now a preview of future work back on Earth...

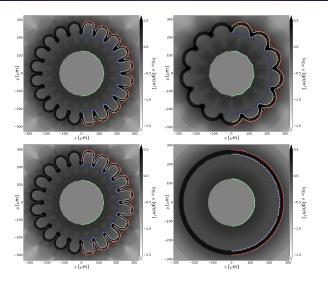
Inertial confinement fusion


Inertial confinement fusion

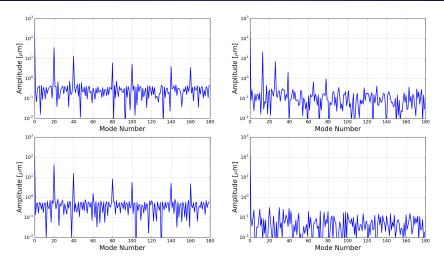
In collaboration with

Brandon Wilson, Josh Sauppe, & Kyle Hickmann, *poster* at the APS Division of Plasma Physics 2020:

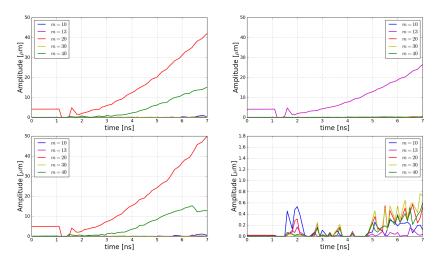
- Laser-driven cylindrical implosions are used to study hydrodynamic instability growth, which aids in understanding the degradation mechanisms in inertial confinement fusion (ICF) implosions
- Convergent Rayleigh-Taylor instability (RTI) seeded by perturbations in experiments and simulations – intentional as well as tolerance variations
- *M* periodic perturbations in plane through cylinder axis
- **Goal:** min/max detectable perturbations → robustness, *uncertainty quantification*


Illustration of ICF capsules

Angular-frequency spectra (FFT) of a *marker* gives amplitudes *A* for $\overline{\text{RTI}}$ modes *m* over *n* sampled angles w/ (inner) marker radius *a*, indexed by *k* (A_0 normed by 1/2):


$$A_m \equiv \frac{2}{n} \sum_{k=0}^{n-1} a_k \exp\left[-2\pi i \frac{mk}{n}\right]$$

ICF perturbation density profiles


Density (g cm⁻³) profiles in the (radius *r*, angle θ) plane at 5 nanoseconds (ns). _{31/36}

ICF modal spectra

Modal spectra (amplitude A_m in μ m vs dimensionless mode number m), at 5 ns.

ICF modal evolution

(y-axis scales vary). A_m vs t (ns).

Summary of inertial confinement fusion

Spectral sensitivity is a means to understand simulation fidelity's limits.

Characterizing response to modes quantifies sensitivity to other effects, such as manufacturing tolerances, as spectra are the (orthonormal) *basis* for many other quantities of interest (Qols).

This work uses xRAGE and has been performed for the U.S. Department of Energy by Los Alamos National Laboratory.

Conclusion

Acknowledgments

Thanks to Tania Regimbau, Samaya Nissanke, and Andrew Miller for inviting this LGBTQSTEMDay presentation to LIGO, Virgo, and KAGRA, and to my collaborators: Shaela Jones, Kyle Hickmann, Charles (Nick) Arge, Humberto Godinez-Vasquez, and Carl Henney.

This talk has been assigned Los Alamos Unlimited Release LA-UR-20-29403

Questions: gdmeadors@lanl.gov

Happy LGBTQSTEMDay!

Bibliography

References

- Y.-M. Wang and N. Sheeley Jr, Astrophys J 392, 310 (1992).
- A. Doucet, S. Godsill, and C. Andrieu, Statistics and computing 10, 197 (2000).
- C. Arge and V. Pizzo, J Geophys Res Space Physics **105**, 10465 (2000).
- D. Foreman-Mackey, The Journal of Open Source Software 24 (2016), URL http://dx.doi.org/10.5281/zenodo.45906.
- S. McGregor, W. Hughes, C. Arge, and M. Owens, J Geophys Res Space Physics **113** (2008).
- K. Hickmann, H. Godinez, C. Henney, and C. Arge, Solar Physics **290**, 1105 (2015).