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Introduction

Data analysis
science of statistical analysis
across data types
including uncertainty

forward: cause→ effect
inverse: effect→ cause

Outline
• Space weather:

model for predicting
solar wind & polarity

• Particle filtering:
optimization with Monte Carlo

• Simulation & observation:
twin tests and real data

• Back to Earth:
independent work in
inertial confinement fusion
(ICF)
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Space weather

Space weather
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Space weather model adaptive optimization

Published: Meadors,
Jones, Hickmann et al
Space Weather 18 (2020) 5

Definition
Data assimilation:
combining observation with
theory to yield (better) prediction

• Wang-Sheeley-Arge (WSA):
a practical Fortran model
for space-weather prediction

• Space data science:
particle filter/Monte Carlo
– solar wind & polarity

WIND satellite
(Credit: NASA Goddard SFC)
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Space weather: WSA as a simplified model

Solar magnetic field lines in Wang-Sheeley-Arge (WSA) model:
red/blue = polarity. Kinked lines ∼ unphysical→ must tune WSA

2 model parameters:

Rss = source surface radius ≈ 2.6 R◦

Ri = interface radius ≈ 2.3 R◦

Optimization: use satellite data to adaptively adjust/predict better
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Space weather: predicting the changing sun

Solar wind (above),
magnetic field
polarity (below):

WSA 2019
example prediction
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Space weather: changing cycles as input
Space weather environment fluctuates
Prediction possible with models ∼WSA
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Input to WSA – 12 realizations of ADAPT global solar magnetograms
(1992 to 2003) based on KPVT (Kitt Peak Vacuum Telescope) images 7 / 36



Space weather informed by inference

Wrap Python around operational NASA Fortran code

Reframe problem:

Solar magnetic field – a 2-D parameter space (shifting over time)
What determines shape? Goodness-of-fit H to satellite data1,

H =
avg correct polarity

avg solar wind velocity residual

Likelihood & probability – inaccessible:
instrumental noise distribution unknown

Performance metric H is calculable

1that is, compare WSA model predictions to satellite data (e.g., WIND)
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Space weather: implications for wind
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Solar wind radial velocity (km·s−1) at L1 (WIND: 1995-09-29/1995-11-24)
for ensembles of varying (Rss,Ri) – close fit ∝ ↑ H
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Space weather: data assimilation

→ How many H samples to tune (Rss,Ri) optimally?

. . . WSA (Rss,Ri) may vary – fast or slow
=⇒ metric behavior uncertain

Data assimilation
take samples evaluated on time window 0
→ apply (re-)samples to next time window 1

requires slowly-evolving data =⇒ sample density grows at peak

Optimization process assures model performance with
continual measurement, which iteratively tunes model
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Of performance metrics and particles
=⇒ ideal for particle filter (sequential Monte Carlo)
(like ensemble Kalman filter, applicable to terrestrial prediction)

(upper left) iteration 0: samples, (upper right): calculate total & resample
(lower left): perturbation kernel, (lower right) iteration 1: evaluate
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Space weather (simulation)

Simulation
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Space weather (simulation): filter, window 0

Source radius (Rsol) = 3.12+0.52
0.50
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‘Twin’ experiment at (Rss,Ri) = (2.6,2.3), 512 samples, 7 days
particle filter (true value marked by red crosshairs) 13 / 36



Space weather (simulation): filter, window 1

Source radius (Rsol) = 3.00+0.59
0.37
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‘Twin’ experiment at (Rss,Ri) = (2.6,2.3), 512 samples, 7 days
particle filter (true value marked by red crosshairs) 14 / 36



Space weather (simulation): filter, window 2

Source radius (Rsol) = 2.92+0.60
0.30
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‘Twin’ experiment at (Rss,Ri) = (2.6,2.3), 512 samples, 7 days
particle filter (true value marked by red crosshairs) 15 / 36



Space weather (real data)

Real data
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Space weather (real data): filter, window 0
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Carrington Rotation 1901/1902 real data (ADAPT map 5/WIND)
particle filter, 512 samples, 7-day windows (3-day advance predictions) 17 / 36



Space weather (real data): filter, window 1
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Carrington Rotation 1901/1902 real data (ADAPT map 5/WIND)
particle filter, 512 samples, 7-day windows (3-day advance predictions) 18 / 36



Space weather (real data): filter, window 2
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Space weather (real data): filter, window 3
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particle filter, 512 samples, 7-day windows (3-day advance predictions) 20 / 36



Space weather (real data): filter, window 4
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Space weather (real data): filter, window 5
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Analysis: comparison (solar wind)

Solar wind radial velocity vs time for 2 weeks wrt WIND satellite data
comparing standard (Rss,Ri) = (2.51,2.49) to filter optimum (3.9,3.4)
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Analysis: comparison (performance metric)

Metric H (higher = better) vs time for 2 weeks wrt WIND satellite data
comparing standard (Rss,Ri) = (2.51,2.49) to filter optimum (3.9,3.4)

24 / 36



Solar magnetic fields with better model results

Solar magnetic field lines traced at standard values (TOP) and
at possible particle-filter optimum, (Rss,Ri) = (3.50,2.51) (BOTTOM):
smoothness =⇒ greater physical self-consistency (+ accuracy)
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Summary of space weather

• (given base of NASA code, encapsulate in Python),
• Optimization: satellite observations,

combined with particle filtering,
can tune corona→ solar wind models,
& optimize parameters
=⇒ ↑ sensitivity

• Widely-used WSA space weather model
now adapts & evolves in time,
→ operationalization being studied by NOAA

Now a preview of future work back on Earth...
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Inertial confinement fusion

Inertial confinement fusion
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Inertial confinement fusion (ICF)

In collaboration with
Brandon Wilson, Josh Sauppe, & Kyle Hickmann,
poster at the APS Division of Plasma Physics 2020:

• Laser-driven cylindrical implosions are used to study hydrodynamic
instability growth, which aids in understanding the degradation
mechanisms in inertial confinement fusion (ICF) implosions

• Convergent Rayleigh-Taylor instability (RTI) seeded by perturbations in
experiments and simulations – intentional as well as tolerance
variations

• M periodic perturbations in plane through cylinder axis
• Goal: min/max detectable perturbations
→ robustness, uncertainty quantification
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Illustration of ICF capsules
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ICF modal decomposition

Angular-frequency spectra (FFT) of a marker gives amplitudes A for
RTI modes m over n sampled angles w/ (inner) marker radius a,
indexed by k (A0 normed by 1/2):

Am ≡
2
n

n−1∑
k=0

ak exp

[
−2πi

mk
n

]

30 / 36



ICF perturbation density profiles

Density (g cm−3) profiles in the (radius r , angle θ) plane at 5 nanoseconds (ns).
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ICF modal spectra

Modal spectra (amplitude Am in µm vs dimensionless mode number m), at 5 ns.
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ICF modal evolution

(y -axis scales vary ). Am vs t (ns).
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Summary of inertial confinement fusion

Spectral sensitivity is a means to understand simulation fidelity’s limits.

Characterizing response to modes quantifies sensitivity to other effects,
such as manufacturing tolerances, as spectra are the (orthonormal) basis
for many other quantities of interest (QoIs).

This work uses xRAGE and has been performed for the U.S.
Department of Energy by Los Alamos National Laboratory.
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Conclusion
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